
OCAML FOR FUN AND PROFIT
TIM MCGILCHRIST

🐫

INTRODUCTION

‣ Tim McGilchrist (https://github.com/tmcgilchrist)

‣ Pragmatic Functional Programmer

‣ Works with OCaml at Tarides

‣ Tarides focuses on building functional systems using OCaml

🐫🐫

MOTIVATION

Practical OCaml Programming, applying Functional Programming
to everyday problems.

Why you should consider using OCaml for your next project?

Experience Report of using OCaml in anger.

🐫🐫🐫

WHAT IS OCAML?

OCaml is a general-purpose, industrial-strength programming language
with an emphasis on expressiveness and safety.

‣ Native compiler and byte code interpreter

‣ Static type-checking

‣ Type inferencing

‣ Algebraic data types (ADT)

‣ Automatic memory management with a Garbage Collector

‣ Typed module system

‣ First class modules, GADTs, Objects, and more.

🐫🐫🐫🐫

SO WHO USES IT? WHAT FOR?
Relied upon by many different companies.

Who use it for:

▸ Building rich web applications

▸ Low level systems programming

▸ Performance sensitive services

▸ Designing Hardware

▸ Modelling complex business domains

▸ Mobile iOS/Android applications

🐫🐫🐫🐫🐫

PRAGMATICALLY SOLVING PROBLEMS
 OCaml provides you with all you will need to program in general; defining data structures, functions and the
means for combining them.

What is the minimal set of features that OCaml brings that makes a difference?

Algebraic Data Types (ADT)

Type Inference

Functions as first class concepts

Strict evaluation

Large scale typed patterns

🐫🐫🐫🐫🐫🐫

PRAGMATICALLY SOLVING PROBLEMS
Algebraic Data Types as typed building blocks.

Records as collections of labelled data.

Variants as choices between different options.

Naturally oriented around using functions everywhere.

🐫🐫🐫🐫🐫🐫🐫

PRAGMATICALLY SOLVING PROBLEMS
Type inference in OCaml is complete.

A strictly evaluated language, maps to
what you expect.

Support for programming in the large with
modules and abstractions over modules.

🐫🐫🐫🐫🐫🐫🐫🐫

HOW STATICALLY TYPED FUNCTIONAL PROGRAMMERS WRITE CODE
Iterative development of types and their inhabitants.

Type errors as todo lists.

Sketching with type signatures and holes.

Write module signatures containing types and function signatures as design tools.

Compiler is a companion in writing code.

https://dl.acm.org/doi/10.1145/3485532

🐫🐫🐫🐫🐫🐫🐫🐫🐫

CASE STUDY - INTEROP WITH OTHER LANGUAGES
NO programming language is an island. You will often
need to call into other languages, let other languages call
you, or somehow pass information between systems.

What does OCaml bring in this area?

typed discipline for enforcing boundaries

type directed property testing

make invalid states unrepresentable

great support for RPC protocols

🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫

CASE STUDY - EXTENDING TO THE FRONT-END
OCaml has a mature story for compiling to JavaScript.

Two well established options for compiling to Javascript:

Js_of_ocaml (aka JSOO) compiler from OCaml byte code to Javascript (http://ocsigen.org/js_of_ocaml/)

Melange branded as OCaml for JavaScript developers (https://melange.re)

Compiles each source file into a Javascript module.

Mature bindings to React.

Focus on interoperability with Javascript ecosystem.

http://ocsigen.org/js_of_ocaml/
https://melange.re

🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫

CASE STUDY - EXTENDING TO THE FRONT-END
OCaml makes a great front-end language.

Extra benefits like type safe HTML, typed routes and URL links.

typed HTML, valid by construction

typed routes and links, valid by construction

typed data components

closing the loop between front and backend

more powerful type system than typescript

In the future WASM support.

🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫

COLLABORATE USING TYPES

Practice Type Driven Development.

Use types and interfaces as a design and collaboration tool.

Write types, function signatures and modules before ever writing an implementation.

Choose how tightly you want to type your programs.

Focus on the crucial components with stronger typed discipline.

Like all good things, there needs to be balance.

🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫

REFACTORING FEARLESSLY

More of your time will be spent reading and modifying existing
code, than writing new code.

Choose a language that provides a great experience for that.

OCaml gives you a huge leg up in dealing with code
maintenance.

Exhaustive pattern matching combined with type information tells
you where there are issues.

🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫

REFACTORING FEARLESSLY

Test Driven Development loop:

1. Write some tests describing how you expected something to work.

2. Run the test, they fail.

3. Write some code to make 1 or more tests pass.

4. Either write more code or fix more tests.

Replace with Type Driven Development.

🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫

GROWING YOUR TEAM

Small language with orthogonal features, it is learnable!

Teach engineers, you will anyway

OCaml memory management vs Rust

OCaml type system features vs Go or Typescript

OCaml vs large languages like Scala or Haskell

 What if we train our engineers and they leave?

 What if we don't and they stay? - HN comments

🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫

PROGRAMMING IN THE LARGE
What does it mean to program in the large with OCaml?

Module - named container for types and functions

Signatures - interfaces for modules

Package - collection of modules that share a common purpose

Functors - functions from modules to modules

GADTs - Generalised Algebraic Data Types an extension of Algebraic Data Types

First Class Modules - modules as values

Objects / Classes - Object Orientation in your Functional Programming

🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫

RETROSPECTIVE ON USING OCAML

Personal perspective on using OCaml for CI work.

OCaml is a small language with orthogonal features, that work well
together.

Tooling is surprisingly good.

Large range of quality solutions to problems.

Community is friendly.

Backwards compatibility is taken seriously.

🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫

RETROSPECTIVE ON USING OCAML

Selection of systems built with OCaml:

obuilder - providing cross platform sandbox execution library supporting
Linux, MacOS, Windows and FreeBSD.

ocaml.ci.dev - CI system for OCaml projects hosted on GitHub and GitLab.

solver-service - embarrassingly parallel 0Install solver able to saturate
large multicore machines.

ocaml-docs-ci - large scale documentation generation for all OCaml
packages. Builds documentation for 25,000 package versions.

opam repository ci - validates new packages against matrix of operating
systems, hardware architectures and reverse dependencies, ensuring the
health of the package universe.

🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫

WRAP IT UP

OCaml is a pragmatic statically typed programming language.

Used to build real systems not just toys.

types are fantastic!!!

collaborate using types

a small language with orthogonal features

native support for refactoring and code maintenance

language support for programming in the large

🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫

RESOURCES

‣ Real World OCaml https://realworldocaml.org/

‣ Ocsigen, a Web Programming Framework https://doi.org/10.1145/1631687.1596595

‣ How Statically-Typed Functional Programmers Write Code. https://jlubin.net/assets/oopsla21.pdf

‣ LexiFi: Modelling language for Finance https://ocaml.org/success-stories/modeling-language-
for-finance

‣ Ahref using Melange, OCaml to build index https://tech.ahrefs.com/beyond-typescript-
differences-between-typed-languages-f3e14253

‣ Getting started with ATD and Melange https://tech.ahrefs.com/getting-started-with-atdgen-and-
bucklescript-1f3a14004081

‣ How Docker Desktop uses OCaml https://www.docker.com/blog/how-docker-desktop-
networking-works-under-the-hood/

https://realworldocaml.org/
https://doi.org/10.1145/1631687.1596595
https://jlubin.net/assets/oopsla21.pdf
https://ocaml.org/success-stories/modeling-language-for-finance
https://ocaml.org/success-stories/modeling-language-for-finance
https://tech.ahrefs.com/beyond-typescript-differences-between-typed-languages-f3e14253
https://tech.ahrefs.com/beyond-typescript-differences-between-typed-languages-f3e14253
https://tech.ahrefs.com/getting-started-with-atdgen-and-bucklescript-1f3a14004081
https://tech.ahrefs.com/getting-started-with-atdgen-and-bucklescript-1f3a14004081
https://www.docker.com/blog/how-docker-desktop-networking-works-under-the-hood/
https://www.docker.com/blog/how-docker-desktop-networking-works-under-the-hood/

🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫🐫

DIRECTORS EXTENDED EDITION
What sucks about OCaml?

Exciting new developments:

▸ Algebraic Effects - Effect handlers are a mechanism for modular programming with user-defined effects.

▸ Effect handlers are a generalisation of exception handlers and enable non-local control-flow mechanisms
such as resumable exceptions, lightweight threads, coroutines, generators and asynchronous I/O to be
composably expressed.

▸ Shared memory parallelism - enables parallel programming across cores and threads.

▸ WASM support - Wasm_of_ocaml compiles OCaml byte code to WebAssembly. Uses Garbage
Collection, tail-call and exception handling extensions. Wasocaml compiles OCaml IR to WebAssembly.

▸ Eio - Effects-based direct-style IO for multicore OCaml.

