
Leveraging Determinism

Frank Yu



Trusting Deterministic Execution to Stabilize, 
Scale, and Simplify Systems



If you have some important logic

Make it deterministic



If you have deterministic logic

Don’t be afraid to replay it anywhere for 
efficiency and profit



About Us and Our Problems







Trading Exchanges must

● Be Correct
● Have Consistent and Predictable Performance
● Remember Everything for Auditability



How can the system evolve safely and 
efficiently while performing?



Make sure your core is simple



Not Simple: Tangled Web of Services



Simple: One Well Tested Service



Not Simple: Concurrency and Non 
Deterministic Execution



Simple: Deterministic Execution



Think of a program as a state 
machine



Input × State → State

Input × State → Output



Requests × State → State

Input × State → Output



Requests × State → New State

Input × State → Output



Requests × State → New State

Requests × State → Output



Requests × State → New State

Requests × State → Events



Ordered Inputs 
+

Deterministic Execution
 → 

Same State and Outputs



Sequenced Requests 
+

Deterministic Execution
 → 

Same State and Outputs



Sequenced Requests 
+

Determinism
 → 

Same State and Outputs



Sequenced Requests 
+

Determinism
 → 

Replicated State and Events



Benefits of Determinism

High Availability



Without Raft Consensus

Service ��



With Raft Consensus

Service ��Service

Service

👑



Benefits of Determinism

Open Source Fast 
Consensus with Aeron 

Cluster



Benefits of Determinism

Single Threaded 
Performance



Benefits of Determinism

Straightforward Testing



Benefits of Determinism

Tools for 
Troubleshooting



Benefits of Determinism

Service ��



Benefits of Determinism

Service ��Service



Sign us up!



Gateway

Gateway

Raft
Monolith Replicator

DbWriter

Gateway

Metal Datacenter AWS Region



Gateway

Gateway

Raft
Monolith Replicator

DbWriter

Gateway

Metal Datacenter AWS Region

(Alice, BUY, 2, BIT, 20000)



Gateway

Gateway

Raft
Monolith Replicator

DbWriter

Gateway

Metal Datacenter AWS Region

(Alice, BUY, 2, BIT, 20000)



Gateway

Gateway

Raft
Monolith Replicator

DbWriter

Gateway

Metal Datacenter AWS Region



Gateway

Gateway

Raft
Monolith Replicator

DbWriter

Gateway

Metal Datacenter AWS Region



Gateway

Gateway

Raft
Monolith Replicator

DbWriter

Gateway

Metal Datacenter AWS Region



Gateway

Gateway

Raft
Monolith Replicator

DbWriter

Gateway

Metal Datacenter AWS Region



Gateway

Gateway

Raft
Monolith Replicator

DbWriter

Gateway

Metal Datacenter AWS Region

(Alice, BUY, 2, BIT, 20000)



Gateway

Gateway

Raft
Monolith Replicator

DbWriter

Gateway

Metal Datacenter AWS Region

(SUBMITTED, Alice, BUY, 2, BIT, 20000, oid3)
(TRADE, Alice, BUY, 1, BIT, 20000, oid3, tid5, 1 left)
(TRADE, Bob, SELL, 1, BIT, 20000, oid1, tid5, 0 left)
(TRADE, Alice, BUY, 1, BIT, 20000, oid3, tid6, 0 left)
(TRADE, Charlie, SELL, 1, BIT, 20000, oid2, tid6, 3 left)

(Alice, BUY, 2, BIT, 20000)



Gateway

Gateway

Raft
Monolith Replicator

DbWriter

Gateway

Metal Datacenter AWS Region

(SUBMITTED, Alice, BUY, 2, BIT, 20000, oid3)
(TRADE, Alice, BUY, 1, BIT, 20000, oid3, tid5, 1 left)
(TRADE, Bob, SELL, 1, BIT, 20000, oid1, tid5, 0 left)
(TRADE, Alice, BUY, 1, BIT, 20000, oid3, tid6, 0 left)
(TRADE, Charlie, SELL, 1, BIT, 20000, oid2, tid6, 3 left)

(Alice, BUY, 2, BIT, 20000)



Gateway

Gateway

Raft
Monolith Replicator

DbWriter

Gateway

Metal Datacenter AWS Region

(SUBMITTED, Alice, BUY, 2, BIT, 20000, oid3)
(TRADE, Alice, BUY, 1, BIT, 20000, oid3, tid5, 1 left)
(TRADE, Bob, SELL, 1, BIT, 20000, oid1, tid5, 0 left)
(TRADE, Alice, BUY, 1, BIT, 20000, oid3, tid6, 0 left)
(TRADE, Charlie, SELL, 1, BIT, 20000, oid2, tid6, 3 left)

(Alice, BUY, 2, BIT, 20000)

Can we optimize?



Gateway

Gateway

Raft
Monolith Replicator

DbWriter

Gateway

Metal Datacenter AWS Region

(SUBMITTED, Alice, BUY, 2, BIT, 20000, oid3)
(TRADE, Alice, BUY, 1, BIT, 20000, oid3, tid5, 1 left)
(TRADE, Bob, SELL, 1, BIT, 20000, oid1, tid5, 0 left)
(TRADE, Alice, BUY, 1, BIT, 20000, oid3, tid6, 0 left)
(TRADE, Charlie, SELL, 1, BIT, 20000, oid2, tid6, 3 left)

(Alice, BUY, 2, BIT, 20000)

Business logic is 
often fast/cheap

Writing and reading 
data can be 

slow/expensive



Gateway

Gateway

Raft
Monolith Replicator

DbWriter

Gateway

Metal Datacenter AWS Region

(SUBMITTED, Alice, BUY, 2, BIT, 20000, oid3)
(TRADE, Alice, BUY, 1, BIT, 20000, oid3, tid5, 1 left)
(TRADE, Bob, SELL, 1, BIT, 20000, oid1, tid5, 0 left)
(TRADE, Alice, BUY, 1, BIT, 20000, oid3, tid6, 0 left)
(TRADE, Charlie, SELL, 1, BIT, 20000, oid2, tid6, 3 left)

(Alice, BUY, 2, BIT, 20000)

How can Deterministic 
Execution help here?



Gateway

Gateway

Raft
Monolith Replicator

DbWriter

Gateway

Metal Datacenter AWS Region



Gateway

Gateway

Raft
Monolith Replicator

DbWriter

Gateway

Metal Datacenter AWS Region

(Alice, BUY, 2, BIT, 20000)



Gateway

Gateway

Raft
Monolith Replicator

DbWriter

Gateway

Metal Datacenter AWS Region

(Alice, BUY, 2, BIT, 20000)



Gateway

Gateway

Raft
Monolith Replicator

DbWriter

Gateway

Metal Datacenter AWS Region

(SUBMITTED, Alice, BUY, 2, BIT, 20000, oid3)
(TRADE, Alice, BUY, 1, BIT, 20000, oid3, tid5, 1 left)
(TRADE, Bob, SELL, 1, BIT, 20000, oid1, tid5, 0 left)
(TRADE, Alice, BUY, 1, BIT, 20000, oid3, tid6, 0 left)
(TRADE, Charlie, SELL, 1, BIT, 20000, oid2, tid6, 3 left)

(Alice, BUY, 2, BIT, 20000)



Gateway

Gateway

Raft
Monolith Replicator

DbWriter

Gateway

Metal Datacenter AWS Region

(Alice, BUY, 2, BIT, 20000)



Gateway

Gateway

Raft
Monolith Replicator

DbWriter

Gateway

Metal Datacenter AWS Region

(Alice, BUY, 2, BIT, 20000)



Gateway

Gateway

Raft
Monolith Replicator

DbWriter

Gateway

Metal Datacenter AWS Region

Monolith

M
onolith

(Alice, BUY, 2, BIT, 20000)



Gateway

Gateway

Raft
Monolith Replicator

Metal Datacenter AWS Region

Monolith

M
onolith

(Alice, BUY, 2, BIT, 20000)

Gateway

DbWriter



Gateway

Gateway

Raft
Monolith Replicator

DbWriter

Gateway

Metal Datacenter AWS Region



Gateway

Gateway

Raft
Monolith Replicator

DbWriter

Gateway

Metal Datacenter AWS Region

(SUBMITTED, Alice, BUY, 2, BIT, 20000, oid3)
(TRADE, Alice, BUY, 1, BIT, 20000, oid3, tid5, 1 left)
(TRADE, Bob, SELL, 1, BIT, 20000, oid1, tid5, 0 left)
(TRADE, Alice, BUY, 1, BIT, 20000, oid3, tid6, 0 left)
(TRADE, Charlie, SELL, 1, BIT, 20000, oid2, tid6, 3 left)

(SUBMITTED, Alice, BUY, 2, BIT, 20000, oid3)
(TRADE, Alice, BUY, 1, BIT, 20000, oid3, tid5, 1 left)
(TRADE, Bob, SELL, 1, BIT, 20000, oid1, tid5, 0 left)
(TRADE, Alice, BUY, 1, BIT, 20000, oid3, tid6, 0 left)
(TRADE, Charlie, SELL, 1, BIT, 20000, oid2, tid6, 3 left)

(SUBMITTED, Alice, BUY, 2, BIT, 20000, oid3)
(TRADE, Alice, BUY, 1, BIT, 20000, oid3, tid5, 1 left)
(TRADE, Bob, SELL, 1, BIT, 20000, oid1, tid5, 0 left)
(TRADE, Alice, BUY, 1, BIT, 20000, oid3, tid6, 0 left)
(TRADE, Charlie, SELL, 1, BIT, 20000, oid2, tid6, 3 left)



Gateway

Gateway

Raft
Monolith Replicator

Metal Datacenter AWS Region

Monolith

M
onolith

Gateway

DbWriter

(Alice, BUY, 2, BIT, 20000)

(Alice, BUY, 2, BIT, 20000)

(Alice, BUY, 2, BIT, 20000)



Gateway

Gateway

Raft
Monolith Replicator

AWS Region AWS Region

Monolith

M
onolith

Gateway

DbWriter

Monolith

Monolith



Inputs are often smaller than 
outputs

Replay logic to scale and stabilize



Inputs can be more 
consistent than outputs

Replay logic to scale and stabilize



What is your 99th percentile 
network load?

Replay logic to scale and stabilize



(Alice, SELL, 1000, BIT, Market)

Replay logic to scale and stabilize



Input sizes and rates can be 
validated/rejected

Replay logic to scale and stabilize



Output size and rate are hard 
to validate/reject

Replay logic to scale and stabilize



Protect from Thundering 
Herd by not sending blasts of 

events

Replay logic to scale and stabilize



Replay your logs in 
production to scale and 
stabilize your system



Replicating Compute can 
simplify downstream code



Deduplication is 
Optimization, not 

Architecture



Gateway

Gateway

Raft
Monolith Replicator

AWS Region AWS Region

Monolith

M
onolith

Gateway

DbWriter

Monolith

Monolith



Gateway

Gateway

Raft
Monolith Replicator

AWS Region AWS Region

Monolith

M
onolith

Gateway

DbWriter

Monolith

Monolith

(GetActiveOrders, Alice)



Gateway

Gateway

Raft
Monolith Replicator

AWS Region AWS Region

Monolith

M
onolith

Gateway

DbWriter

Monolith

Monolith

(GetActiveOrders, Alice)



Gateway

Gateway

Raft
Monolith Replicator

AWS Region AWS Region

Monolith

M
onolith

Gateway

DbWriter

Monolith

Monolith
Cache

(GetActiveOrders, Alice)



Gateway

Gateway

Raft
Monolith Replicator

AWS Region AWS Region

Monolith

M
onolith

Gateway

DbWriter

Monolith

Monolith
Cache

(GetActiveOrders, Alice)



Gateway

Gateway

Raft
Monolith Replicator

AWS Region AWS Region

Monolith

M
onolith

Gateway

DbWriter

Monolith

Monolith
Cache

(GetActiveOrders, Alice)



Gateway

Gateway

Raft
Monolith Replicator

AWS Region AWS Region

Monolith

M
onolith

Gateway

DbWriter

Monolith

Monolith
Cache

(GetActiveOrders, Alice)



Gateway

Gateway

Raft
Monolith Replicator

AWS Region AWS Region

Monolith

M
onolith

Gateway

DbWriter

Monolith

Monolith
Cache

Gateway
Gateway

Gateway
Read

Monolith

(GetActiveOrders, Alice) (GetBalances, Alice)



Gateway

Gateway

Raft
Monolith Replicator

AWS Region AWS Region

Monolith

M
onolith

Gateway

DbWriter

Monolith

Monolith

Challenges and 
Considerations



1
Replicate well-tested code or 

bugs will replicate too



2
No Drift: Old behavior must be 

respected when replaying inputs



3
Enable new behavior with a 
request to the monolith after 

deploy



4
Use a seed for deterministic 

pseudorandom outputs



5
Divide large chunks of work into 

stages



6
Everything should fit in memory



7
You’d be surprised how much 

data fits in memory



8
You’d be surprised how much 

work fits on one cpu core



9
Keep your 99s and 99.9s Down



10
Protect your monolith from 

chatty clients



All together now



Simplicity
● Stability 
● Performance
● Development Speed



If you have some important logic

Make it deterministic



If you have deterministic logic

Don’t be afraid to replay it anywhere for 
efficiency and profit



Thanks Everyone!



Credits and References

● Todd Montgomery and Martin Thompson: Aeron and Aeron Cluster
● Martin Thompson: Input X State slides


