
Fighting
Software
Entropy

December 2022

Stewart Gleadow
(Exec Mgr, Engineering)

Alison Rosewarne
(Exec Mgr, Architecture) Image credit: http://www.thenegativepsychologist.com/

http://www.thenegativepsychologist.com/

Alison Rosewarne

Stewart Gleadow

Hi!
👋

We’ve been at
this awhile…

The life of
successful

software

TTL (Time To Legacy)

The life of
successful

software

Physics Lesson:

What is entropy?

Entropy, as described in the 2nd Law of
Thermodynamics

• The measure of disorder of a system.

Characteristics of entropy:

• Systems inherently move to disorder.

• The more disorder that is present, the
less energy is available to do work.

Rudolf Clausius

Source: Aaron (unsplash.com)

Structured
systems have
lower entropy

Photo by Aaron on Unsplash

https://unsplash.com/@ar0n?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/sandcastle?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

YOW! Lesson:
What is software entropy?

Entropy, as described by Stew and Alison

• The measure of disorder in software.

Characteristics of software entropy:

• Software inherently moves to
disorder.

• The more disorder that is present, the
less energy is available to do work.

Stewart Gleadow

Alison Rosewarne Photo by Markus Spiske on Unsplash

https://unsplash.com/@markusspiske?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/computers?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Structured
software has
lower entropy "...high-performing teams were more

likely to have loosely coupled
architectures.”

Source: State of DevOps Report, 2017.

It’s our software architecture that
defines the modularity and
interaction between systems.

https://puppet.com/resources/report/2017-state-devops-report/

Why does
software decay?

Jaye Haych (unsplash.com)

Compromises are made

Shared understanding is lost

Dependencies date

Approaches change

Confirmed by
IBM researchers
Meir M Lehman &
Laszlo Belady

[Some of]
The laws of software evolution

Continuing Change Increasing Complexity

Declining QualityContinuing Growth

“With most software systems,
it becomes harder to add
new features over time.”

Martin Fowler, 2019

Software entropy affects
internal quality

Clean system Time to market

Crufty system Time to market

Do you agree with the following
statement?

“I would like to tear up all of our
organization’s core systems.”

Why should you care
about deteriorating
structure and quality?

Source: Digital Decoupling: U.S. Federal Survey Results, Accenture, 2018.

81% 17%

https://www.slideshare.net/accenture/digital-decoupling-us-federal-survey-results

2000 2005 2010 2015 2020

More software increases entropy

Shifted to an internal
platform strategy

Adopting
microservices

Company really
started scaling

N
um

be
r o

f s
ys

te
m

s

Varying technologies increases entropy

Decreasing entropy is
possible …
in open systems

Isolated System

Matter exchange

Open System

Matter exchange

Energy exchange

How can we fight software entropy?

1. Define the structure

2. Add the energy

Photo by Jaime Spaniol on Unsplash

https://unsplash.com/@jaimespaniol?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/sand-castle?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Architecture practice

Engineering excellence

Continuous improvement

Adopting platforms

Photo by Daiga Ellaby on Unsplash

https://unsplash.com/@daiga_ellaby?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/sand-castle?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

arch-i-tec-ture n
the design and
structure of a
computer system

Photo by Heather McKean on Unsplash

https://unsplash.com/@hjmckean?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/blue-bucket-in-sand?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Principle Name

What – a short explanation

Why – articulates the value

In Practice

• Examples of how this shows
up

• Aiming to simplify adoption

Constant cleaning is part of work well
done.

Incremental improvement, no matter
how small, adds up.

This is a healthy habit.

• Add or improve documentation.

• Fix static analysis violations.

• Increase test coverage.

• Tune monitoring.

Keep it clean

Our architectural principles

Adopt the platform

Make it approachable

Keep it clean

Deploy continuously

Build security in

Manage your data

Map the business domain

Other mechanisms
to improve
architecture

Jaye Haych (unsplash.com)

Technology strategy

Sensible defaults

Decision making frameworks

Knowledge management

“People who have no
choice are generally
unhappy. But people with
too many choices are
almost as unhappy as
those who have no
choice at all.”

- Ellen Ullman

Support freedom from
choice with an internal
tech radar.

We also need to
add energy to
our architecture

Photo by Joshua Gaunt on Unsplash

https://unsplash.com/@ndingujosh
https://unsplash.com/photos/lIWA6x7E5L4

Architects from across our business work together
with dedicated capacity

Chair
(EM, Arch)

Sponsor
(CTO)

Other reps

G
ro

up
 B Member

(Architect)

Team

Team

G
ro

up
 C Member

(Architect)

Team

Team

G
ro

up
 A Member

(Architect)

Team

Team

G
roup F

Member
(Architect)

Team

Team

G
roup E

Member
(Architect)

Team

Team

G
roup D

Member
(Architect)

Team

Team

Architectural
alignment
decreases
software entropy

Principles increase
consistency of
decisions

Freedom from
choice reduces
cognitive load

Dedicated time is
required to drive
outcomes

Key takeaways

Photo by Rudolf-Peter Bakker on Unsplash

https://unsplash.com/@rudolf_peter_bakker?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/sandcastle?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Architecture practice

Engineering excellence

Continuous improvement

Adopting platforms

Photo by Daiga Ellaby on Unsplash

https://unsplash.com/@daiga_ellaby?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/sand-castle?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

What even is good
software?

Photo by Kelli McClintock on Unsplash

https://unsplash.com/@kelli_mcclintock?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/sand-castle?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

First, we
started with

opinions

Radiating information

Visualisation was
powerful

Changing the
language from tech
debt to system health
was important

Remove ambiguity
to be really clear
about the state
you are after

Photo by Phil Hearing on Unsplash

https://unsplash.com/@philhearing?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/sandcastle?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Development
Can I confidently and safely make
changes?

Operations
Can I support the system and confirm
acceptable production behaviour?

Architecture
Is the design extensible and fit for
purpose? Photo by Maxim Abramov on Unsplash

https://unsplash.com/@mzudemx?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/traffic-light?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

(START HERE) (START HERE) (START HERE)

DEVELOPMENT OPERATIONS ARCHITECTURE

Adding structure
to our
expectations

Supported Language

(START HERE)

Containerised

Up-to-date libraries

Continuous Integration

System Recovery Plan

Security Controls

Actionable Alerts

Adequate Logging

Support documentation

Infrastructure As Code

Clear Data Ownership

Documented Architecture

Well-defined Interface

(START HERE) (START HERE)

DEVELOPMENT OPERATIONS ARCHITECTURE

Endorsed Language

Multiple Contributors

Multiple Deployments

Continuous Deployment

Static Analysis

Supported Language

(START HERE)

Containerised

Up-to-date libraries

Continuous Integration

System Recovery Plan

Security Controls

Actionable Alerts

Adequate Logging

Support documentation

Infrastructure As Code

Cost Optimised

System Recovery Tested

SLIs/SLOs

Clear Data Ownership

Documented Architecture

Well-defined Interface

Platform Aligned

Documented Decisions

Single Responsibility

(START HERE) (START HERE)

DEVELOPMENT OPERATIONS ARCHITECTURE

Don’t forget
to add a little

energy…

Photo by Ussama Azam on Unsplash

https://unsplash.com/@ussamaazam?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/sandcastle?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Rating workflow

Rate systems

g3 .treasuremap-data.json

PR

Data publication

Data visualisation

TreasureMapRaw data

InsightsTeam

All anyone asks for is a chance to
work with pride.

- W. Edwards Deming
“All anyone asks for is
a chance to work with
pride.”

- W. Edwards Deming

Agree what
engineering
excellence means
to you

Radiate
information and
build shared
understanding

Use objective
measurements as
a baseline for
improvement

Build a culture of
engineering
excellence

Key takeaways

Photo by Rudolf-Peter Bakker on Unsplash

https://unsplash.com/@rudolf_peter_bakker?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/sandcastle?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Architecture practice

Engineering excellence

Continuous improvement

Adopting platforms

Photo by Daiga Ellaby on Unsplash

https://unsplash.com/@daiga_ellaby?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/sand-castle?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

0 years 5 years 10 years

The passage of time increases entropy
N

um
be

r o
f s

ys
te

m
s

Most of our software is 1 to 7 years old

“The deal with engineering goes like this.

Product management takes 20% of the
capacity right off the table and gives this
to engineering to spend as they see fit”

“If you’re in really bad shape today, you
might need to make this 30% or even
more”

Marty Cagan, 2007

Custodianship: putting the energy in

1. Reducing risk
2. Paying down tech debt

3. Lowering total cost of
ownership

Rudolf Clausius

20% - Custodianship

Adding structure to custodianship

Analysis of health data guides custodianship

Provide automation pathway

Sample outcome of SHIP work

Provide automation pathway

Investing in automation is highly recommended

Renovate

Automated
dependency updates

Buildkite

Scheduled CI/CD builds

Company level OKR: Improve System Health by 40%

Provide automation pathway

Provide automation pathway

Systems Health Improvement Plan introduced

There is a constant
minimum investment
required to fight
software entropy

We default to 20% of
a team’s capacity
and plan this
carefully

Automation allows
you fight entropy
with much less
ongoing effort

Broadcast system
health to get buy in
at all levels

Key takeaways

Photo by Rudolf-Peter Bakker on Unsplash

https://unsplash.com/@rudolf_peter_bakker?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/sandcastle?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Architecture practice

Engineering excellence

Continuous improvement

Adopting platforms

Photo by Daiga Ellaby on Unsplash

https://unsplash.com/@daiga_ellaby?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/sand-castle?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

How do we make it
easier to fight
software entropy?

1. A mindset shift from local to
company-wide tech thinking.

2. Approaching tech platforms
as long-lived products.

Data

Identity

Deploy

Design Visualisation

Finance

Security

2000 2005 2010 2015 2020

Our platform strategy at work

Photo by Mourizal Zativa on Unsplash

The less software you
have to maintain, the
lower the entropy.

https://unsplash.com/@mourimoto
https://unsplash.com/s/photos/lego

Our web platform, Argonaut
http://realestate.com.au/?mfeTag=dev:yow-demo

Jaye Haych (unsplash.com)

35% less code

90% lower custodianship

75% less developer effort

50% time to market

Do our platforms
help us to reduce
the total entropy in
our systems?

90% lower custodianship

Programming Language

Multiple Contributors

Multiple Deployments

Continuous Deployment

Linting

Programming Language

…

Containerised

Libraries & Frameworks

Continuous Integration

…

System Recovery Plan

Security Controls

Actionable Alerts

Adequate Logging

Support 1pager

Infrastructure As Code

Cost Optimised

Disaster Recovery Tested

SLIs/SLOs

…

Clear Data Ownership

Documented Architecture

Well-defined Interface

Platform Aligned

Documented Decisions

Single Responsibility

Platforms make maintaining healthy software easier

A platform strategy
helps the long-term
fight against
software entropy

Platforms reduce the
amount of software
you write

Platforms reduce the
amount of software
you maintain

Platforms increase
overall consistency
and structure

Key takeaways

Photo by Rudolf-Peter Bakker on Unsplash

https://unsplash.com/@rudolf_peter_bakker?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/sandcastle?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Architecture practice

Engineering excellence

Continuous improvement

Adopting platforms

Photo by Daiga Ellaby on Unsplash

https://unsplash.com/@daiga_ellaby?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/sand-castle?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Software entropy is a
very real and present
issue in our industry.
Ignore it at your peril.

REA fights software entropy with:

• Architectural alignment
• A culture of engineering excellence
• Dedicated capacity for teams and architects
• A platform strategy reducing bespoke

software

By getting the
structures in place
and the right energy
investment, you too
can fight software
entropy.

Key takeaways

Photo by Rudolf-Peter Bakker on Unsplash

https://unsplash.com/@rudolf_peter_bakker?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/sandcastle?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Fighting
Software
Entropy

December 2022

Stewart Gleadow
(Exec Mgr, Engineering)

Alison Rosewarne
(Exec Mgr, Architecture) Image credit: http://www.thenegativepsychologist.com/

http://www.thenegativepsychologist.com/

