
Matt Ranney / December 2022

Migrations
The Actual Hardest Problem in Computer Science



Hello



Motivation



Motivation

• Nobody wants to work on migrations, but why?



Motivation

• Nobody wants to work on migrations, but why?

• Turns out they are super hard.



Motivation

• Nobody wants to work on migrations, but why?

• Turns out they are super hard.

• You are all very wise and deserve a raise.



Migrations



Migrations

• Converting from one software system or service to another.



Migrations

• Converting from one software system or service to another.

• Decomposing an API “monolith”.



Migrations

• Converting from one software system or service to another.

• Decomposing an API “monolith”.

• Moving databases around for whatever reason.



Why Are Migrations Hard?



Why Are Migrations Hard?

• Old systems are generally not well understood. People move around.



Why Are Migrations Hard?

• Old systems are generally not well understood. People move around.

• Most systems are not built with upgrades in mind.



Why Are Migrations Hard?

• Old systems are generally not well understood. People move around.

• Most systems are not built with upgrades in mind.

• When designing software interfaces, it’s very hard to anticipate the ways in 
which you’ll want to change them later.



Why Are Migrations Hard?

• Old systems are generally not well understood. People move around.

• Most systems are not built with upgrades in mind.

• When designing software interfaces, it’s very hard to anticipate the ways in 
which you’ll want to change them later.

• Many modern software systems cannot be turned off without significant 
business consequences.



Making Changes to Always-On Systems



Making Changes to Always-On Systems

• Everything you do must be forward and backward compatible.



Making Changes to Always-On Systems

• Everything you do must be forward and backward compatible.

• If anything goes wrong, and it certainly will, roll it back.



DoorDash Migration Example





DoorDash Migration Example



DoorDash Migration Example

iOS 
client

Android 
client

Web 
client



DoorDash Migration Example

iOS 
client

Android 
client

Web 
client

CDN Ingress / 
Security



DoorDash Migration Example

iOS 
client

Android 
client

Web 
client

CDN Ingress / 
Security Django



DoorDash Migration Example

iOS 
client

Android 
client

Web 
client

CDN Ingress / 
Security Django Postgres



DoorDash Migration Example

iOS 
client

Android 
client

Web 
client

CDN Ingress / 
Security

Django 
Cx

Postgres

Django 
Dxapi-dasher.doordash.com

api.doordash.com



DoorDash Migration Example

iOS 
client

Android 
client

Web 
client

CDN Ingress / 
Security

Django 
Cx

Postgres

Django 
Dxapi-dasher.doordash.com

api.doordash.com ORM

ORM



Now We Must Decide



Now We Must Decide

• Rewrite the whole thing?



Now We Must Decide

• Rewrite the whole thing?

• Break off some small pieces?



DoorDash Migration Example

iOS 
client

Android 
client

Web 
client

CDN Ingress / 
Security

Django 
Cx

Postgres

Django 
Dxapi-dasher.doordash.com

api.doordash.com ORM

ORM

Order 
Service

Order 
Database

Cart 
Service

Cart 
Database



How To Break Off Some Small Pieces



How To Break Off Some Small Pieces

• All of these options sound bad.



How To Break Off Some Small Pieces

• All of these options sound bad.

• All of these options ARE bad.



How To Break Off Some Small Pieces

• All of these options sound bad.

• All of these options ARE bad.

• One is generally less bad, depending on the situation.



How To Break Off Some Small Pieces

• All of these options sound bad.

• All of these options ARE bad.

• One is generally less bad, depending on the situation.

• Remember that YOU are the one that had to go and have a successful 
business with a large team.



Making Changes to Always-On Systems

• Everything you do must be forward and backward compatible.


• If anything goes wrong, and it certainly will, roll it back.



Dual Write

Client

Old Service New Service



Dual Write

Client

Old Service New Service

Backfill / Sync



Dual Write

Client

Old Service New Service

API Logic

Backfill / Sync



Dual Write

Client

Old Service New Service

API Logic

Uses original API as if nothing has changed

Backfill / Sync



Dual Write

Client

Old Service New Service

API Logic

Uses original API as if nothing has changed

writeswrites

Backfill / Sync



Dual Write

Client

Old Service New Service

API Logic

Uses original API as if nothing has changed

reads + writesreads + writes

return old, compare new

Backfill / Sync



Dual Write

Client

Old Service New Service

API Logic

Uses original API as if nothing has changed

reads + writesreads + writes

return new, compare old

Backfill / Sync



Dual Write

Client

New Service

API Logic

Uses original API as if nothing has changed

reads + writes

🎉 use only new



This Sounds Bad



This Sounds Bad

• What if I’m using auto-incrementing keys?



This Sounds Bad

• What if I’m using auto-incrementing keys?

• What if one write fails and the other succeeds?



This Sounds Bad

• What if I’m using auto-incrementing keys?

• What if one write fails and the other succeeds?

• My API is super important and I NEED transactions.



API “Dual Write”

iOS 
client

Android 
client

Web 
client

CDN Ingress / 
Security

Django 
Cx

Postgres

Django 
Dx

ORM

ORM

Order 
Service

Order 
Database



API “Dual Write”

iOS 
client

Android 
client

Web 
client

CDN Ingress / 
Security

Django 
Cx

Postgres

Django 
Dx

ORM

ORM

Order 
Service

Order 
Database

API 
Wrapper



API “Dual Write”

iOS 
client

Android 
client

Web 
client

CDN Ingress / 
Security

Django 
Cx

Postgres

Django 
Dx

ORM

ORM

Order 
Service

Order 
Database

API 
Wrapper

api.dd.com/order/1234



API “Dual Write”

iOS 
client

Android 
client

Web 
client

CDN Ingress / 
Security

Django 
Cx

Postgres

Django 
Dx

ORM

ORM

Order 
Service

Order 
Database

API 
Wrapper

api.dd.com/order/1234 python 
create_order(1234)



API “Dual Write”

iOS 
client

Android 
client

Web 
client

CDN Ingress / 
Security

Django 
Cx

Postgres

Django 
Dx

ORM

ORM

Order 
Service

Order 
Database

API 
Wrapper

api.dd.com/order/1234

gRPC 
createOrder(1234)

python 
create_order(1234)



Database “Dual Write”

iOS 
client

Android 
client

Web 
client

CDN Ingress / 
Security

Django 
Cx

Postgres

Django 
Dx

ORM

ORM

Order 
Service

Order 
Database

api.dd.com/order/1234

insert into order

insert into order



Surprising Third Option

iOS 
client

Android 
client

Web 
client

CDN Ingress / 
Security

Django 
Cx

Postgres

Django 
Dx

ORM

ORM

Order 
Service

Order 
Database

cx-mobile.dd.com/order/1234New 
Client

old boring API

write new

read / write old

read / w
rite new write old



What Did DD Do?



What Did DD Do?

• Started with DB Dual Write.



What Did DD Do?

• Started with DB Dual Write.

• Took a long time and corrupted some data. Product velocity impacted.



What Did DD Do?

• Started with DB Dual Write.

• Took a long time and corrupted some data. Product velocity impacted.

• Then went with shared DB approach.



What Did DD Do?

• Started with DB Dual Write.

• Took a long time and corrupted some data. Product velocity impacted.

• Then went with shared DB approach.

• This made everyone happier… at first.



What Did DD Do?

• Started with DB Dual Write.

• Took a long time and corrupted some data. Product velocity impacted.

• Then went with shared DB approach.

• This made everyone happier… at first.

• Growth made this challenging, and eventually we were stuck.



What Did DD Do?

• Started with DB Dual Write.

• Took a long time and corrupted some data. Product velocity impacted.

• Then went with shared DB approach.

• This made everyone happier… at first.

• Growth made this challenging, and eventually we were stuck.

• Went back to apply a mix of API and DB Dual Write



What Did DD Do?

• Started with DB Dual Write.

• Took a long time and corrupted some data. Product velocity impacted.

• Then went with shared DB approach.

• This made everyone happier… at first.

• Growth made this challenging, and eventually we were stuck.

• Went back to apply a mix of API and DB Dual Write

• Also, sadly, we had to do some client forced upgrades.



How To Decide Which Technique Is Best?



How To Decide Which Technique Is Best?

• API Dual Write / DB Dual Write



How To Decide Which Technique Is Best?

• API Dual Write / DB Dual Write

• Backwards compatible. Only 1 external API to support.



How To Decide Which Technique Is Best?

• API Dual Write / DB Dual Write

• Backwards compatible. Only 1 external API to support.

• Beware flexible APIs that allow arbitrary “queries”.



How To Decide Which Technique Is Best?

• API Dual Write / DB Dual Write

• Backwards compatible. Only 1 external API to support.

• Beware flexible APIs that allow arbitrary “queries”.

• If external API has diverged from database model, also beware.



How To Decide Which Technique Is Best?

• API Dual Write / DB Dual Write

• Backwards compatible. Only 1 external API to support.

• Beware flexible APIs that allow arbitrary “queries”.

• If external API has diverged from database model, also beware.

• At the end of a very long upgrade cycle, now you have 2 things that work 
the same way as your 1 old thing.



How To Decide Which Technique Is Best?

• API Dual Write / DB Dual Write

• Backwards compatible. Only 1 external API to support.

• Beware flexible APIs that allow arbitrary “queries”.

• If external API has diverged from database model, also beware.

• At the end of a very long upgrade cycle, now you have 2 things that work 
the same way as your 1 old thing.

• API vs. DB choice depends on details of the system.



How To Decide Which Technique Is Best?



How To Decide Which Technique Is Best?

• Build new, share DB, wait:



How To Decide Which Technique Is Best?

• Build new, share DB, wait:

• Allows a different kind of forward progress with the product.



How To Decide Which Technique Is Best?

• Build new, share DB, wait:

• Allows a different kind of forward progress with the product.

• Sharing databases is tricky and brittle and hard to walk back.



How To Decide Which Technique Is Best?

• Build new, share DB, wait:

• Allows a different kind of forward progress with the product.

• Sharing databases is tricky and brittle and hard to walk back.

• If you share a database, do you also share a cache?



How To Decide Which Technique Is Best?

• Build new, share DB, wait:

• Allows a different kind of forward progress with the product.

• Sharing databases is tricky and brittle and hard to walk back.

• If you share a database, do you also share a cache?

• Actual cutover might be tricky, or require downtime.



How To Decide Which Technique Is Best?

• Build new, share DB, wait:

• Allows a different kind of forward progress with the product.

• Sharing databases is tricky and brittle and hard to walk back.

• If you share a database, do you also share a cache?

• Actual cutover might be tricky, or require downtime.

• Minimal incentive to “finish”.



How To Decide Which Technique Is Best?

• Build new, share DB, wait:

• Allows a different kind of forward progress with the product.

• Sharing databases is tricky and brittle and hard to walk back.

• If you share a database, do you also share a cache?

• Actual cutover might be tricky, or require downtime.

• Minimal incentive to “finish”.

• Probably don’t do this unless you are really sure it’s what you want.



Ways to Make Migrations Easier



Ways to Make Migrations Easier

• Maybe don’t use an ORM.



Ways to Make Migrations Easier

• Maybe don’t use an ORM.

• Maybe don’t use a SQL database:



Ways to Make Migrations Easier

• Maybe don’t use an ORM.

• Maybe don’t use a SQL database:

• With complex queries and lots of joins



Ways to Make Migrations Easier

• Maybe don’t use an ORM.

• Maybe don’t use a SQL database:

• With complex queries and lots of joins

• With a single primary



Ways to Make Migrations Easier

• Maybe don’t use an ORM.

• Maybe don’t use a SQL database:

• With complex queries and lots of joins

• With a single primary

• Think carefully about mixing event-based systems with RPC-based ones.



Ways to Make Migrations Easier

• Maybe don’t use an ORM.

• Maybe don’t use a SQL database:

• With complex queries and lots of joins

• With a single primary

• Think carefully about mixing event-based systems with RPC-based ones.

• Try to use “good” abstractions that give you leverage.



Good Abstractions



Good Abstractions

A good abstraction or interface is one that allows either side to change 
something without requiring coordination or changes to the other side.



Good Abstractions

A good abstraction or interface is one that allows either side to change 
something without requiring coordination or changes to the other side.

• This gives teams tremendous leverage and safety to make changes.



Good Abstractions

A good abstraction or interface is one that allows either side to change 
something without requiring coordination or changes to the other side.

• This gives teams tremendous leverage and safety to make changes.

• Beware of claims that something comes “for free”. Over time this is generally 
never true.



Good Abstractions

A good abstraction or interface is one that allows either side to change 
something without requiring coordination or changes to the other side.

• This gives teams tremendous leverage and safety to make changes.

• Beware of claims that something comes “for free”. Over time this is generally 
never true.

• Fun exercise: apply this definition of “good” to interfaces you work with.



Good Abstractions

A good abstraction or interface is one that allows either side to change 
something without requiring coordination or changes to the other side.

• This gives teams tremendous leverage and safety to make changes.

• Beware of claims that something comes “for free”. Over time this is generally 
never true.

• Fun exercise: apply this definition of “good” to interfaces you work with.

• Is GraphQL good?



Good Abstractions

A good abstraction or interface is one that allows either side to change 
something without requiring coordination or changes to the other side.

• This gives teams tremendous leverage and safety to make changes.

• Beware of claims that something comes “for free”. Over time this is generally 
never true.

• Fun exercise: apply this definition of “good” to interfaces you work with.

• Is GraphQL good?

• How about Kafka?



Why Is This All So Hard?



Why Is This All So Hard?

• Everyone builds their own custom tooling to solve this problem.



Why Is This All So Hard?

• Everyone builds their own custom tooling to solve this problem.

• Hard to justify investing in good abstractions vs. product features.



Why Is This All So Hard?

• Everyone builds their own custom tooling to solve this problem.

• Hard to justify investing in good abstractions vs. product features.

• Cultural bias against premature optimization.



Why Is This All So Hard?

• Everyone builds their own custom tooling to solve this problem.

• Hard to justify investing in good abstractions vs. product features.

• Cultural bias against premature optimization.

• Learned helplessness creeps in.



Why Is It REALLY So Hard?



Why Is It REALLY So Hard?

• We don’t typically reward people for doing good work in this area.



Why Is It REALLY So Hard?

• We don’t typically reward people for doing good work in this area.

• Senior engineers don’t engage because they perceive it as bad for their 
careers, or maybe they just don’t find it interesting.



Why Is It REALLY So Hard?

• We don’t typically reward people for doing good work in this area.

• Senior engineers don’t engage because they perceive it as bad for their 
careers, or maybe they just don’t find it interesting.

• Senior engineers should be all about offering leverage from their time.



Why Is It REALLY So Hard?

• We don’t typically reward people for doing good work in this area.

• Senior engineers don’t engage because they perceive it as bad for their 
careers, or maybe they just don’t find it interesting.

• Senior engineers should be all about offering leverage from their time.

• At this point in our industry, this migration problem should not exist.



Thank You


