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Migrations
The Actual Hardest Problem in Computer Science
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• Nobody wants to work on migrations, but why?

• Turns out they are super hard.

• You are all very wise and deserve a raise.
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Migrations

• Converting from one software system or service to another.

• Decomposing an API “monolith”.

• Moving databases around for whatever reason.
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Why Are Migrations Hard?

• Old systems are generally not well understood. People move around.

• Most systems are not built with upgrades in mind.

• When designing software interfaces, it’s very hard to anticipate the ways in 
which you’ll want to change them later.

• Many modern software systems cannot be turned off without significant 
business consequences.
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• Everything you do must be forward and backward compatible.

• If anything goes wrong, and it certainly will, roll it back.
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• Rewrite the whole thing?

• Break off some small pieces?



DoorDash Migration Example
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How To Break Off Some Small Pieces

• All of these options sound bad.

• All of these options ARE bad.

• One is generally less bad, depending on the situation.

• Remember that YOU are the one that had to go and have a successful 
business with a large team.
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• Everything you do must be forward and backward compatible.


• If anything goes wrong, and it certainly will, roll it back.
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Dual Write

Client

New Service

API Logic

Uses original API as if nothing has changed

reads + writes

🎉 use only new
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This Sounds Bad

• What if I’m using auto-incrementing keys?

• What if one write fails and the other succeeds?

• My API is super important and I NEED transactions.
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What Did DD Do?

• Started with DB Dual Write.

• Took a long time and corrupted some data. Product velocity impacted.

• Then went with shared DB approach.

• This made everyone happier… at first.

• Growth made this challenging, and eventually we were stuck.

• Went back to apply a mix of API and DB Dual Write

• Also, sadly, we had to do some client forced upgrades.
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How To Decide Which Technique Is Best?

• API Dual Write / DB Dual Write

• Backwards compatible. Only 1 external API to support.

• Beware flexible APIs that allow arbitrary “queries”.

• If external API has diverged from database model, also beware.

• At the end of a very long upgrade cycle, now you have 2 things that work 
the same way as your 1 old thing.

• API vs. DB choice depends on details of the system.
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How To Decide Which Technique Is Best?

• Build new, share DB, wait:

• Allows a different kind of forward progress with the product.

• Sharing databases is tricky and brittle and hard to walk back.

• If you share a database, do you also share a cache?

• Actual cutover might be tricky, or require downtime.

• Minimal incentive to “finish”.

• Probably don’t do this unless you are really sure it’s what you want.
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Ways to Make Migrations Easier

• Maybe don’t use an ORM.

• Maybe don’t use a SQL database:

• With complex queries and lots of joins

• With a single primary

• Think carefully about mixing event-based systems with RPC-based ones.

• Try to use “good” abstractions that give you leverage.
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Good Abstractions

A good abstraction or interface is one that allows either side to change 
something without requiring coordination or changes to the other side.

• This gives teams tremendous leverage and safety to make changes.

• Beware of claims that something comes “for free”. Over time this is generally 
never true.

• Fun exercise: apply this definition of “good” to interfaces you work with.

• Is GraphQL good?

• How about Kafka?
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Why Is This All So Hard?

• Everyone builds their own custom tooling to solve this problem.

• Hard to justify investing in good abstractions vs. product features.

• Cultural bias against premature optimization.

• Learned helplessness creeps in.
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Why Is It REALLY So Hard?

• We don’t typically reward people for doing good work in this area.

• Senior engineers don’t engage because they perceive it as bad for their 
careers, or maybe they just don’t find it interesting.

• Senior engineers should be all about offering leverage from their time.

• At this point in our industry, this migration problem should not exist.



Thank You


