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eBay Architecture

1995 Monolithic Perl

1996-2002 v2
o Monolithic C++ ISAPI DLL
o 3.4Mlines of code

Y o Compiler limits on number of methods per class
a 2002-2006 v3 Migration

o Java “mini-applications”
o Shared databases

2012 v4 Microservices

2017 v5 Microservices
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Amazon Architecture

amazon
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e 1995-2001 Obidos

o Monolithic Perl / Mason frontend over C
backend

~4GB application in a 4GB address space
Regularly breaking Gnu linker

o Restarting every 100-200 requests for memory
leaks

o Releasing once per quarter

« 2001-2005 Service Migration

o Servicesin C++, Java, efc.
o No shared databases

« 2006 AWS launches



No one starts with microservices

Past a certain scale, everyone ends
up with microservices
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Modular Services

Service boundaries match the problem

domain

Service boundaries encapsulate
business logic and data
o Allinteractions through published service interface

o Interface hides internal implementation details
o No back doors

Service boundaries encapsulate
architectural -ilities

o Fault isolation

o Performance optimization

o Security boundary
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Orthogonal Domain Logic

Stateless domain logic
o ldeally stateless pure function
o Matches domain problem as directly as possible
o Deterministic and testable in isolation
o Robust to change over time

“Straight-line processing”
o Straightforward, synchronous, minimal branching

Separate domain logic from |/O
o Hexagonal architecture, Ports and Adapters
o Functional core, imperative shell
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Sharding

« Shards partition the service's “data space”

o Units for distribution, replication, processing, storage
o Hidden as internal implementation detail

« Shards encapsulate architectural -ilities
o Resource isolation
o Faultisolation
o Availability
o Performance

« Shards are autoscaled

o Divide or scale out as processing or data needs increase

e F | ET)ynOmoDB partitions, Aurora segments, Bigtable
ablets

@randyshoup



Service ecosystem

Common services provide and
o Services call others, which call others, etc.
o Graph, not a strict layering
Services grow and evolve over time
o Factor out common libraries and services as
needed
o Teams and services split like “cellular mitosis”
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Common Platform

 "Paved Road”
o Shared infrastructure
o Standard frameworks ...
o Developer experience
o E.g., Netflix, Google
« Separation of Concerns ..

o Reduce cognitive load on stream-aligned

o Bound decisions through enabling constraints
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Large-scale organizations often
invest more than 50% of
engineering effort in platform
capabilities
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Evolving Services

 Variation and Natural Selection

o Create / extract new services when needed o
solve a problem

o Services justify their continued existence through

Google

o Deprecate services when they are no longer
used

« Domains grow and divide over
time

@randyshoup



@@@@@@@@@@@

“Every service at
Google is either
deprecated or not
ready yet.”
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e Simple Interactions
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Event-Driven

« Communicate state changes as
sfream of events

o Statement that some interesting thing
occurred

o ldedlly represents a semantic domain event

 Decouples domains and teams
.'-'_- _. o Abstracted through a well-defined
interface

o Asynchronous from one another

« Simplifies component
implementation
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Services and Events

« Events are a first-class part of a service interface

« A service interface includes

Synchronous request-response (REST, gRPC, etc)
Events the service produces
Events the service consumes

Bulk reads and writes (ETL)

©)
©)
©)
©)

« The interface includes any mechanism for geffing
dafa in or out of the service (!)
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Immutable Log

@randyshoup

Store state as immutable log of events
o Event Sourcing

Often matches domain
o E.g., Stitch Fix order processing / delivery state

Log encapsulates architectural —ilities
o Durable
o Traceable and auditable
o Replayable
o Explicit and comprehensible

Compact snapshots for efficiency



Immutable Log

« Example: Stitch Fix order states

o History of the states of a order

Request a fix

Assign fix to warehouse
Assign fix to a stylist
Style the fix

Pick the items for the fix
Pack the items into a box
Ship the fix via a carrier
Fix travels to customer

Customer decides, pays

fix_scheduled
fix_hizzy_assigned
fix_stylist_assigned
fix_styled
fix_picked
fix_packed
fix_shipped
fix_delivered

fix_checked_out



Embrace Asynchrony

 Decouples operations in fime

o Decoupled availability
o Independent scalability
Allows more complex processing, more

O
processing in parallel
._____ _. o Safer to make independent changes

« Simplifies component
Implementation
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Embrace Asynchrony

* |Invert from synchronous call

graph to async dataflow

o Exploit asymmetry between writes and
reads

o Can be orders of magnitude less
) resource intensive

@randyshoup
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Incremental Change

Decompose every large change into small
Incremental steps

Each step maintains backward / forward
compatibility of data and interfaces

Multiple service versions commonly coexist

o Every change is arolling upgrade
o Transitional states are normal, not exceptional



Continuous Testing

« Tests help us go faster

o Tests are “solid ground”
o Tests are the safety net

e Tests make better code

o Confidence to break things
o Courage to refactor mercilessly

« Tests make beftter systems
o Catch bugs earlier, fail faster
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Developer Productivity

Writing
New Code

« 75% reading
existing code

« 20% modifying
existing code

« 5% writing new
code

https://blogs.msdn.microsoft.com/peterhal/2006/01/04/what-do-programmers-really-do-anyway-aka-part-2-of-the-yardstick-saga/
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Continuous Testing

« Tests make better designs
o Modularity
o Separation of Concerns
o Encapsulation

@randyshoup



“There’s a deep synergy between
testability and good design. All of the
pain that we feel when writing unit tests
points at underlying design problems.”

- Michael Feathers
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Test-Driven Development

« =>» Basically no bug tracking
system (!)
o “Inbox Zero” for bugs

STITCH FIX® o Bugs are fixed as they come up

o Backlog contains features we want to
build

o Backlog contains technical debt we want
to repay
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Canary Deployments

« Staged rollout
o Go slowly at first; go faster when you gain confidence

« Automated rollout / rollback

o Automatically monitor changes to metrics
o If meftrics look good, keep going; if metrics look bad, roll back

 Make deployments routine and boring
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Feature Flags

« Configuration “flag” to enable / disable a feature

for a particular set of users
o Independently discovered at eBay, Facebook, Google, etc.

 More solid systems

o Decouple feature delivery from code delivery
o Rapid on and off
o Develop / test / verify in production

@randyshoup



Continuous Delivery

* Deploy services multiple times per day
o Robust build, test, deploy pipeline
o SLO monitoring
o Synthetic monitoring

 More solid systems

o Release smaller, simpler units of work

o Smaller changes to roll back or roll forward

o Faster to repair, easier to understand, simpler to diagnose
o Increase rate of change and reduce risk of change

@randyshoup



Continuous Delivery

ebY

@randyshoup

Cross-company Velocity Initiative to
improve software delivery

o Think Big, Start Small, Learn Fast
o lteratively identify and remove bottlenecks for teams

e ‘(‘jWhé]T would it take to deploy your application every
Oy c "

Doubled engineering productivity
o b5x faster deployment frequency
o b5x fasterlead time
o 3xlower change failure rate
o 3x lower mean-time-to-restore

Prerequisite for large-scale architecture
changes



Continuous Delivery

ACCELERATE

=2 44% more time
on features vs.
maintenance




Continuous Delivery

THE SCIENCE OF DE

ACCELERATE = 2.5x more likely

to exceed goals
o Profitability
o Market share
o Productivity




Large-Scale Architecture

e Putting It All Together
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System of Record

« Single System of Record
o Every piece of data is owned by a single service
o That service is the canonical system of record for that data

L__styling-service |

|_customer-service |- | )
L_customer-search |

[ ] L__billing-service |

« Every other copy is a read-only, non-authoritative cache
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Shared Data

Option 1: Synchronous Lookup

o Customer service owns customer data
o Fulfilment service calls customer service in real fime

[ fulfilment-service ]
customer-service
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Shared Data

Option 2: Async event + local cache

o Customer service owns customer data
o Customer service sends address—-updated event when customer address
changes

o Fulfilment service caches current customer address

L_customer-service | ] ) [ fulfilment-service ]

J | J
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Joins

Option 1: Join in Client Service

o Get asingle customer from customer-service
o Query matching orders for that customer from order-service

order-history-page

customer-service

Customers

l order-service !
(

@randyshoup

Orders




Joins

Option 2: Service that “Materializes the View”
o Listen to events from item-service, events from order-service
o Maintain denormalized join of items and orders together in local storage

item-service S | I -

: = = = (- = — — =»|__item-feedback-service
order-feedback-service r

!
FS 0T

R L
G 1}
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Transactions

 Monolithic database makes transactions across multiple
entities easy

BEGIN; INSERT INTO A ..; UPDATE B...; COMMIT;

s

« Splitfing data across services makes fransactions
challenging

@randyshoup



“In general, application
developers simply do not
implement large scalable
applications assuming
distributed transactions.’

-- Pat Helland
Life After Distributed Transactions: An Apostate’s Opinion, 2007

7



“Grownups don’t use
distributed transactions”

-- Pat Hellanad



Workflows and Sagas

* Transaction = Saga
o Model the transaction as a state machine of atomic events

 Reimplement as a workflow

« Roll back with compensating operations in reverse
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Workflows and Sagas

Many real-world systems work like this
 Payment processing

 Expense approval

« Software development process

@randyshoup



Intermediate States

Explicitly expose intermediate states in the interface
 Payment sftarted, pending, complete

« Expense submitted, approved, paid

 Feature developed, reviewed, deployed, released
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Amazon Aurora

Industry 3: DB Systems in the Cloud and Open Source SIGMOD" 18, June 10-15, 2018, Houston, TX, USA

Amazon Aurora: On Avoiding Distributed Consensus for 1/Os,
Commits, and Membership Changes

Alexandre Verbitski, Anurag Gupta, Debanjan Saha, James Corcy Kamal Gupta
Murali Raman Mittal, Sailesh Sandor Maurice
Tengiz Kharatishvilli, Xiaofeng Bao
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« Asynchronous redo log writes

o Sent asynchronously to Aurora storage nodes

o Acknowledged asynchronously to database
instance

o No distributed consensus round
o ldempotent, immutable, monotonic

« Quorum acknowledgement

o Lo% progresses forward once quorum of nodes
nowledges

« Reestablish consistency on crash
recovery

Verbitski, et al, 2018, Amazon Aurora: On Avoiding Distributed Consensus, SIGMOD “18.



https://dl.acm.org/doi/10.1145/3183713.3196937

Nettlix Viewing History

« Store and process member’s playback
data
o 1M requests per second

o Used for viewing history, personalization,
recommendations, analyfics, etc.

« Qriginal synchronous architecture

o Synchronously write to persistent storage and lookup
cache

Durable queues o lAv%illobiIiTy and data loss from backpressure at high
o]e

« Asynchronous rearchitecture

o Write to durable queue
o Async pipeline to enrich, process, store, serve
o Materialize views to serve reads

@randyshoup Sharma Podila, 2021, Microservices to Async Processing Migration at Scale, QConPlus 2021.



https://www.infoq.com/presentations/migration-microservices-scale

Walmart Item Availability

« |s this item available to ship to this customer?
o Customer SLO 99.98% uptime in 300ms

« Complexlogic involving many feams and

domains
o Inventory, reservations, backorders, eligibility, sales caps, etc.

Walmart . Original synchronous architecture

Save money. Live better. Graph of 23 nested synchronous service calls in hot path
Any component failure invalidates results

Service SLOs 99.999% uptime with 50ms marginal latency
Extremely expensive to build and operate

0O O O O

@randyshoup Scott Havens, 2019, Fabulous Fortunes, Fewer Failures, and Faster Fixes from Functional Fundamentals, DOES 2019.



https://www.youtube.com/watch?v=FskIb9SariI

Walmart Item Availability

Walmartcom

*

Item availability

,—f

Global item Warehouse-item
availability API availability API
4 AA4
Store Inventory
Availability

T T‘ |
Legacy Storelfl Szl Store Inventory Legacy
Legac ore Hoor backroom Backorder i
reser\g}ati\:ms Backorders store inventory i 5 cache ol item
inventory EHERT e eligibility

Global item Warehouse-item
availability cache availability cache

Global warehouse
item inventory

inventor

Warehouse
Item eligibility Warehouse inventory eligibility

@randyshoup Scott Havens, 2019, Fabulous Fortunes, Fewer Failures, and Faster Fixes from Functional Fundamentals, DOES 2019.



https://www.youtube.com/watch?v=FskIb9SariI

Walmart Item Availability

* Invert each service to use async events

©)

O
O
O

Event-driven “dataflow”

ldempotent processing

Event-sourced immutable log

Materialized view of data from upstream dependencies

« Asynchronous rearchitecture

Walmart ;

Save money. Live better. o

2 services in synchronous hot path

Async service SLOs 99.9% uptime with latency in seconds
or minutes

More resilient to delays and outages
Orders of magnitude simpler to build and operate

@randyshoup Scott Havens, 2019, Fabulous Fortunes, Fewer Failures, and Faster Fixes from Functional Fundamentals, DOES 2019.
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Walmart Item Availability

Sales caps Walmartcom

Warehouse & store f
eligibility
Warehouse inventory Item availability API
Item eligibility

3" party inventory

Warehouse & store

: Warehouse- Global item
Inventory

Store onhand item & store- availability
inventory item
Backorders/locks

Availability datastore

availabilit
Store backroom i

inventor ;
Y Reservations/orders

@randyshoup Scott Havens, 2019, Fabulous Fortunes, Fewer Failures, and Faster Fixes from Functional Fundamentals, DOES 2019.
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Thank you!

yW @randyshoup

m inkedin.com/in/randyshoup

m medium.com/@randyshoup



