Large-Scale Architecture

The Unreasonable
Effectiveness of Simplicity

Randy Shoup
@randyshoup

Background
e\ Google

wework

STITCH FIX

@randyshoup

eBay Architecture

1995 Monolithic Perl

1996-2002 v2
o Monolithic C++ ISAPI DLL
o 3.4Mlines of code

Y o Compiler limits on number of methods per class
a 2002-2006 v3 Migration

o Java “mini-applications”
o Shared databases

2012 v4 Microservices

2017 v5 Microservices

@randyshoup

Amazon Architecture

amazon

@randyshoup

e 1995-2001 Obidos

o Monolithic Perl / Mason frontend over C
backend

~4GB application in a 4GB address space
Regularly breaking Gnu linker

o Restarting every 100-200 requests for memory
leaks

o Releasing once per quarter

« 2001-2005 Service Migration

o Servicesin C++, Java, efc.
o No shared databases

« 2006 AWS launches

No one starts with microservices

Past a certain scale, everyone ends
up with microservices

@randyshoup

Large-Scale Architecture

e Simple Components

e Simple Interactions

e Simple Changes

e Putting It All Together

€€€L

Large-Scale Architecture

e Simple Components

€€€L

Modular Services

Service boundaries match the problem

domain

Service boundaries encapsulate
business logic and data
o Allinteractions through published service interface

o Interface hides internal implementation details
o No back doors

Service boundaries encapsulate
architectural -ilities

o Fault isolation

o Performance optimization

o Security boundary

@randyshoup

Orthogonal Domain Logic

Stateless domain logic
o ldeally stateless pure function
o Matches domain problem as directly as possible
o Deterministic and testable in isolation
o Robust to change over time

“Straight-line processing”
o Straightforward, synchronous, minimal branching

Separate domain logic from |/O
o Hexagonal architecture, Ports and Adapters
o Functional core, imperative shell

@randyshoup

Sharding

« Shards partition the service's “data space”

o Units for distribution, replication, processing, storage
o Hidden as internal implementation detail

« Shards encapsulate architectural -ilities
o Resource isolation
o Faultisolation
o Availability
o Performance

« Shards are autoscaled

o Divide or scale out as processing or data needs increase

e F | ET)ynOmoDB partitions, Aurora segments, Bigtable
ablets

@randyshoup

Service ecosystem

Common services provide and
o Services call others, which call others, etc.
o Graph, not a strict layering
Services grow and evolve over time
o Factor out common libraries and services as
needed
o Teams and services split like “cellular mitosis”

@randyshoup

Common Platform

 "Paved Road”
o Shared infrastructure
o Standard frameworks ...
o Developer experience
o E.g., Netflix, Google
« Separation of Concerns ..

o Reduce cognitive load on stream-aligned

o Bound decisions through enabling constraints

@randyshoup

Large-scale organizations often
invest more than 50% of
engineering effort in platform
capabilities

@randyshoup

Evolving Services

 Variation and Natural Selection

o Create / extract new services when needed o
solve a problem

o Services justify their continued existence through

Google

o Deprecate services when they are no longer
used

« Domains grow and divide over
time

@randyshoup

@@@@@@@@@@@

“Every service at
Google is either
deprecated or not
ready yet.”

Large-Scale Architecture

e Simple Interactions

€€€L

Event-Driven

« Communicate state changes as
sfream of events

o Statement that some interesting thing
occurred

o ldedlly represents a semantic domain event

 Decouples domains and teams
.'-'_- _. o Abstracted through a well-defined
interface

o Asynchronous from one another

« Simplifies component
implementation

@randyshoup

Services and Events

« Events are a first-class part of a service interface

« A service interface includes

Synchronous request-response (REST, gRPC, etc)
Events the service produces
Events the service consumes

Bulk reads and writes (ETL)

©)
©)
©)
©)

« The interface includes any mechanism for geffing
dafa in or out of the service (!)

@randyshoup

Immutable Log

@randyshoup

Store state as immutable log of events
o Event Sourcing

Often matches domain
o E.g., Stitch Fix order processing / delivery state

Log encapsulates architectural —ilities
o Durable
o Traceable and auditable
o Replayable
o Explicit and comprehensible

Compact snapshots for efficiency

Immutable Log

« Example: Stitch Fix order states

o History of the states of a order

Request a fix

Assign fix to warehouse
Assign fix to a stylist
Style the fix

Pick the items for the fix
Pack the items into a box
Ship the fix via a carrier
Fix travels to customer

Customer decides, pays

fix_scheduled
fix_hizzy_assigned
fix_stylist_assigned
fix_styled
fix_picked
fix_packed
fix_shipped
fix_delivered

fix_checked_out

Embrace Asynchrony

 Decouples operations in fime

o Decoupled availability
o Independent scalability
Allows more complex processing, more

O
processing in parallel
._____ _. o Safer to make independent changes

« Simplifies component
Implementation

@randyshoup

Embrace Asynchrony

* |Invert from synchronous call

graph to async dataflow

o Exploit asymmetry between writes and
reads

o Can be orders of magnitude less
) resource intensive

@randyshoup

Large-Scale Architecture

e Simple Changes

€€€L

Incremental Change

Decompose every large change into small
Incremental steps

Each step maintains backward / forward
compatibility of data and interfaces

Multiple service versions commonly coexist

o Every change is arolling upgrade
o Transitional states are normal, not exceptional

Continuous Testing

« Tests help us go faster

o Tests are “solid ground”
o Tests are the safety net

e Tests make better code

o Confidence to break things
o Courage to refactor mercilessly

« Tests make beftter systems
o Catch bugs earlier, fail faster

@randyshoup

Developer Productivity

Writing
New Code

« 75% reading
existing code

« 20% modifying
existing code

« 5% writing new
code

https://blogs.msdn.microsoft.com/peterhal/2006/01/04/what-do-programmers-really-do-anyway-aka-part-2-of-the-yardstick-saga/

@randyshoup

https://blogs.msdn.microsoft.com/peterhal/2006/01/04/what-do-programmers-really-do-anyway-aka-part-2-of-the-yardstick-saga/

Developer Productivity

« 75% reading
existing code

Writing
New Code

« 20% modifying
existing code

« 5% writing new
code

https://blogs.msdn.microsoft.com/peterhal/2006/01/04/what-do-programmers-really-do-anyway-aka-part-2-of-the-yardstick-saga/

@randyshoup

https://blogs.msdn.microsoft.com/peterhal/2006/01/04/what-do-programmers-really-do-anyway-aka-part-2-of-the-yardstick-saga/

Continuous Testing

« Tests make better designs
o Modularity
o Separation of Concerns
o Encapsulation

@randyshoup

“There’s a deep synergy between
testability and good design. All of the
pain that we feel when writing unit tests
points at underlying design problems.”

- Michael Feathers

@randyshoup

Test-Driven Development

« =>» Basically no bug tracking
system (!)
o “Inbox Zero” for bugs

STITCH FIX® o Bugs are fixed as they come up

o Backlog contains features we want to
build

o Backlog contains technical debt we want
to repay

@randyshoup

Canary Deployments

« Staged rollout
o Go slowly at first; go faster when you gain confidence

« Automated rollout / rollback

o Automatically monitor changes to metrics
o If meftrics look good, keep going; if metrics look bad, roll back

 Make deployments routine and boring

@randyshoup

Feature Flags

« Configuration “flag” to enable / disable a feature

for a particular set of users
o Independently discovered at eBay, Facebook, Google, etc.

 More solid systems

o Decouple feature delivery from code delivery
o Rapid on and off
o Develop / test / verify in production

@randyshoup

Continuous Delivery

* Deploy services multiple times per day
o Robust build, test, deploy pipeline
o SLO monitoring
o Synthetic monitoring

 More solid systems

o Release smaller, simpler units of work

o Smaller changes to roll back or roll forward

o Faster to repair, easier to understand, simpler to diagnose
o Increase rate of change and reduce risk of change

@randyshoup

Continuous Delivery

ebY

@randyshoup

Cross-company Velocity Initiative to
improve software delivery

o Think Big, Start Small, Learn Fast
o lteratively identify and remove bottlenecks for teams

e ‘(‘jWhé]T would it take to deploy your application every
Oy c "

Doubled engineering productivity
o b5x faster deployment frequency
o b5x fasterlead time
o 3xlower change failure rate
o 3x lower mean-time-to-restore

Prerequisite for large-scale architecture
changes

Continuous Delivery

ACCELERATE

=2 44% more time
on features vs.
maintenance

Continuous Delivery

THE SCIENCE OF DE

ACCELERATE = 2.5x more likely

to exceed goals
o Profitability
o Market share
o Productivity

Large-Scale Architecture

e Putting It All Together

€€€L

System of Record

« Single System of Record
o Every piece of data is owned by a single service
o That service is the canonical system of record for that data

L__styling-service |

|_customer-service |- |)
L_customer-search |

[] L__billing-service |

« Every other copy is a read-only, non-authoritative cache

@randyshoup

Shared Data

Option 1: Synchronous Lookup

o Customer service owns customer data
o Fulfilment service calls customer service in real fime

[fulfilment-service]
customer-service

@randyshoup

Shared Data

Option 2: Async event + local cache

o Customer service owns customer data
o Customer service sends address—-updated event when customer address
changes

o Fulfilment service caches current customer address

L_customer-service |]) [fulfilment-service]

J | J

@randyshoup

Joins

Option 1: Join in Client Service

o Get asingle customer from customer-service
o Query matching orders for that customer from order-service

order-history-page

customer-service

Customers

l order-service !
(

@randyshoup

Orders

Joins

Option 2: Service that “Materializes the View”
o Listen to events from item-service, events from order-service
o Maintain denormalized join of items and orders together in local storage

item-service S | I -

: = = = (- = — — =»|__item-feedback-service
order-feedback-service r

!
FS 0T

R L
G 1}

@randyshoup

Transactions

 Monolithic database makes transactions across multiple
entities easy

BEGIN; INSERT INTO A ..; UPDATE B...; COMMIT;

s

« Splitfing data across services makes fransactions
challenging

@randyshoup

“In general, application
developers simply do not
implement large scalable
applications assuming
distributed transactions.’

-- Pat Helland
Life After Distributed Transactions: An Apostate’s Opinion, 2007

7

“Grownups don’t use
distributed transactions”

-- Pat Hellanad

Workflows and Sagas

* Transaction = Saga
o Model the transaction as a state machine of atomic events

 Reimplement as a workflow

« Roll back with compensating operations in reverse

@randyshoup

Workflows and Sagas

Many real-world systems work like this
 Payment processing

 Expense approval

« Software development process

@randyshoup

Intermediate States

Explicitly expose intermediate states in the interface
 Payment sftarted, pending, complete

« Expense submitted, approved, paid

 Feature developed, reviewed, deployed, released

@randyshoup

Amazon Aurora

Industry 3: DB Systems in the Cloud and Open Source SIGMOD" 18, June 10-15, 2018, Houston, TX, USA

Amazon Aurora: On Avoiding Distributed Consensus for 1/Os,
Commits, and Membership Changes

Alexandre Verbitski, Anurag Gupta, Debanjan Saha, James Corcy Kamal Gupta
Murali Raman Mittal, Sailesh Sandor Maurice
Tengiz Kharatishvilli, Xiaofeng Bao
‘Amazon Web Services

arpose bul or Anmn.D ing so networking

loss of data,
heals Traditional i

Zone (A2). An AZ e 8 subset of a Region
. mmughlowu cy e

&
and amplify cost o

by establishin
ing so improves performance, reduc

KEYWORDS
Databases; Distributed Systems; Log Processing; Quorum Models;
@ ets; Replication; R Perf

ts and leveraging local transi o- six e write
educes variability, and lowers costs. d lustrate 1. Aurora

Qu dels, such as the one used by Iy used
datab lhzy

durabilty
We belev thi i because the undelying distrbuted slgor d\m
) Pe

Seanbe

perf
omal rlational database e running o1

789

@randyshoup

« Asynchronous redo log writes

o Sent asynchronously to Aurora storage nodes

o Acknowledged asynchronously to database
instance

o No distributed consensus round
o ldempotent, immutable, monotonic

« Quorum acknowledgement

o Lo% progresses forward once quorum of nodes
nowledges

« Reestablish consistency on crash
recovery

Verbitski, et al, 2018, Amazon Aurora: On Avoiding Distributed Consensus, SIGMOD “18.

https://dl.acm.org/doi/10.1145/3183713.3196937

Nettlix Viewing History

« Store and process member’s playback
data
o 1M requests per second

o Used for viewing history, personalization,
recommendations, analyfics, etc.

« Qriginal synchronous architecture

o Synchronously write to persistent storage and lookup
cache

Durable queues o lAv%illobiIiTy and data loss from backpressure at high
o]e

« Asynchronous rearchitecture

o Write to durable queue
o Async pipeline to enrich, process, store, serve
o Materialize views to serve reads

@randyshoup Sharma Podila, 2021, Microservices to Async Processing Migration at Scale, QConPlus 2021.

https://www.infoq.com/presentations/migration-microservices-scale

Walmart Item Availability

« |s this item available to ship to this customer?
o Customer SLO 99.98% uptime in 300ms

« Complexlogic involving many feams and

domains
o Inventory, reservations, backorders, eligibility, sales caps, etc.

Walmart . Original synchronous architecture

Save money. Live better. Graph of 23 nested synchronous service calls in hot path
Any component failure invalidates results

Service SLOs 99.999% uptime with 50ms marginal latency
Extremely expensive to build and operate

0O O O O

@randyshoup Scott Havens, 2019, Fabulous Fortunes, Fewer Failures, and Faster Fixes from Functional Fundamentals, DOES 2019.

https://www.youtube.com/watch?v=FskIb9SariI

Walmart Item Availability

Walmartcom

*

Item availability

,—f

Global item Warehouse-item
availability API availability API
4 AA4
Store Inventory
Availability

T T‘ |
Legacy Storelfl Szl Store Inventory Legacy
Legac ore Hoor backroom Backorder i
reser\g}ati\:ms Backorders store inventory i 5 cache ol item
inventory EHERT e eligibility

Global item Warehouse-item
availability cache availability cache

Global warehouse
item inventory

inventor

Warehouse
Item eligibility Warehouse inventory eligibility

@randyshoup Scott Havens, 2019, Fabulous Fortunes, Fewer Failures, and Faster Fixes from Functional Fundamentals, DOES 2019.

https://www.youtube.com/watch?v=FskIb9SariI

Walmart Item Availability

* Invert each service to use async events

©)

O
O
O

Event-driven “dataflow”

ldempotent processing

Event-sourced immutable log

Materialized view of data from upstream dependencies

« Asynchronous rearchitecture

Walmart ;

Save money. Live better. o

2 services in synchronous hot path

Async service SLOs 99.9% uptime with latency in seconds
or minutes

More resilient to delays and outages
Orders of magnitude simpler to build and operate

@randyshoup Scott Havens, 2019, Fabulous Fortunes, Fewer Failures, and Faster Fixes from Functional Fundamentals, DOES 2019.

https://www.youtube.com/watch?v=FskIb9SariI

Walmart Item Availability

Sales caps Walmartcom

Warehouse & store f
eligibility
Warehouse inventory Item availability API
Item eligibility

3" party inventory

Warehouse & store

: Warehouse- Global item
Inventory

Store onhand item & store- availability
inventory item
Backorders/locks

Availability datastore

availabilit
Store backroom i

inventor ;
Y Reservations/orders

@randyshoup Scott Havens, 2019, Fabulous Fortunes, Fewer Failures, and Faster Fixes from Functional Fundamentals, DOES 2019.

https://www.youtube.com/watch?v=FskIb9SariI

Large-Scale Architecture

e Simple Components

e Simple Interactions

e Simple Changes

e Putting It All Together

€€€L

Thank you!

yW @randyshoup

m inkedin.com/in/randyshoup

m medium.com/@randyshoup

