
Adrian's Greatest Hits, B-Sides and Re-issues

Adrian Cockcroft | YOW | December 2022
@adrianco@mastodon.social

Like a classic rock band on their annual
“farewell and we aren’t dead yet tour”

I know you just want to hear the hits, but I
want to sneak in some stuff I like too…

(Headbanging optional)

Adrian in 1982
https://soundcloud.com/adrian-cockcroft/black-tiger-dont-look-back

Setlist
Black Tiger – Don’t Look Back – 1982

Netflix in the Cloud – QconSF 2010, Cassandra Summit 2011
Microservices – Various MicroXchg Berlin talks

Cloud Trends – GigaOM Structure – 2016 reissue
Communicating Sequential Goroutines – Gophercon - 2016
Lego spaceships and the kitchen sink - AWS – 2017-2019

DevSusOps – a track from the new album you don’t want to hear

Encore
Bottleneck Analysis – GOTO Aarhus - 2013

https://soundcloud.com/adrian-cockcroft/black-tiger-dont-look-back?in=adrian-cockcroft/sets/black-tiger-bedford-civic-hall

Ne#lix'in'the'Cloud'

Nov'6,'2010'
Adrian'Cockcro:'
@adrianco'#ne#lixcloud'

h=p://www.linkedin.com/in/adriancockcro:'

This talk features ”singles” from these “albums”

Replacing*Datacenter*Oracle*with*
Global*Apache*Cassandra*on*AWS!

July!11,!2011!
Adrian!Cockcro4!
@adrianco!#ne8lixcloud!

h;p://www.linkedin.com/in/adriancockcro4!

State of the Cloud
Adrian Cockcroft @adrianco

Technology Fellow - Battery Ventures
August 2016

See www.battery.com for a list of portfolio investments

Microservices: Why, What and How
Adrian Cockcroft @adrianco

Technology Fellow - Battery Ventures
 October 2016

Communicating Sequential Goroutines
Adrian Cockcroft @adrianco

Technology Fellow - Battery Ventures
 July 2016

Adrian Cockcroft - OrionX.net
@adrianco - @DevSusOps - Oct 2022

DevSusOps
Adding sustainability concerns to development and operations

Ne#lix'in'the'Cloud'

Nov'6,'2010'
Adrian'Cockcro:'
@adrianco'#ne#lixcloud'

h=p://www.linkedin.com/in/adriancockcro:'

We'stopped'building'our'own'
datacenters'

Capacity'growth'rate'is'acceleraJng,'unpredictable'
Product'launch'spikes'L'iPhone,'Wii,'PS3,'XBox'

Datacenter'is'large'inflexible'capital'commitment'

“The!cloud!lets!its!users!focus!
on!delivering!differenAaAng!
business!value!instead!of!
wasAng!valuable!resources!
on!the!undifferen)ated!
heavy!li0ing!that!makes!
up!most!of!IT!
infrastructure.”!

'Werner'Vogels'
'Amazon'CTO'

What,'Why'and'How?'

The'details…'

Goals'

•  Faster'
–  Lower&latency&than'the'equivalent'datacenter'web'pages'and'API'calls'
–  Measured'as'mean'and'99th'percenJle'
–  For'both'first'hit'(e.g.'home'page)'and'inLsession'hits'for'the'same'user'

•  Scalable'
–  Avoid&needing&any&more&datacenter&capacity&as'subscriber'count'increases'
–  No'central'verJcally'scaled'databases'
–  Leverage'AWS'elasJc'capacity'effecJvely'

•  Available'
–  SubstanJally'higher&robustness&and&availability'than'datacenter'services'
–  Leverage'mulJple'AWS'availability'zones'
–  No'scheduled'down'Jme,'no'central'database'schema'to'change'

•  ProducJve'
–  OpJmize'agility&of'a'large'development'team'with'automaJon'and'tools'
–  Leave'behind'complex'tangled'datacenter'code'base'(~8'year'old'architecture)'
–  Enforce'clean'layered'interfaces'and'reLusable'components'

Old'Datacenter'vs.'New'Cloud'Arch'

Central'SQL'Database' Distributed'Key/Value'NoSQL'

SJcky'InLMemory'Session' Shared'Memcached'Session'

Cha=y'Protocols' Latency'Tolerant'Protocols'

Tangled'Service'Interfaces' Layered'Service'Interfaces'

Instrumented'Code' Instrumented'Service'Pa=erns'

Fat'Complex'Objects' Lightweight'Serializable'Objects'

Components'as'Jar'Files' Components'as'Services'

Tangled'Service'Interfaces'

•  Datacenter'implementaJon'is'exposed'
– Oracle'SQL'queries'mixed'into'business'logic'

•  Tangled'code'
– Deep'dependencies,'false'sharing'

•  Data'providers'with'sideways'dependencies'
– Everything'depends'on'everything'else'

AnARpaTern!affects!producAvity,!availability!

Untangled'Service'Interfaces'

•  New'Cloud'Code'With'Strict'Layering'
– Compile'against'interface'jar'

– Can'use'spring'runJme'binding'to'enforce'

•  Service'interface'is&the'service'
–  ImplementaJon'is'completely'hidden'
– Can'be'implemented'locally'or'remotely'

–  ImplementaJon'can'evolve'independently'

Untangled'Service'Interfaces'

Two'layers:'
•  SAL'L'Service'Access'Library'
– Basic'serializaJon'and'error'handling'
– REST'or'POJO’s'defined'by'data'provider'

•  ESL'L'Extended'Service'Library'
– Caching,'conveniences'
– Can'combine'several'SALs'
– Exposes'faceted'type'system'(described'later)'
–  Interface'defined'by'data'consumer'in'many'cases'

Service'InteracJon'Pa=ern'
Sample'Swimlane'Diagram'

Boundary'Interfaces'

•  Isolate'teams'from'external'dependencies'
– Fake'SAL'built'by'cloud'team'

– Real'SAL'provided'by'data'provider'team'later'
– ESL'built'by'cloud'team'using'faceted'objects'

•  Fake'data'sources'allow'development'to'start'
– e.g.'Fake'IdenJty'SAL'for'a'test'set'of'customers'

– Development'solidifies'dependencies'early'
– Helps'external'team'provide'the'right'interface'

One'Object'That'Does'Everything'

•  Datacenter'uses'a'few'big'complex'objects'
– Movie'and'Customer'objects'are'the'foundaJon'
– Good'choice'for'a'small'team'and'one'instance'
– ProblemaJc'for'large'teams'and'many'instances'

•  False'sharing'causes'tangled'dependencies'
– UnproducJve'reLintegraJon'work'

AnARpaTern!impacAng!producAvity!and!
availability!

An'Interface'For'Each'Component'

•  Cloud'uses'faceted'Video'and'Visitor'
– Basic'types'hold'only'the'idenJfier'
– Facets'scope'the'interface'you'actually'need'
– Each'component'can'define'its'own'facets'

•  No'falseLsharing'and'dependency'chains'
– Type'manager'converts'between'facets'as'needed'

– video.asA(PresentaJonVideo)'for'www'
– video.asA(MerchableVideo)'for'middle'Jer'

Response to 2010 talk was a mixture of incomprehension
and confusion. Most people thought we were crazy and

would be back in our datacenters when it failed…

Replacing*Datacenter*Oracle*with*
Global*Apache*Cassandra*on*AWS!

July!11,!2011!
Adrian!Cockcro4!
@adrianco!#ne8lixcloud!

h;p://www.linkedin.com/in/adriancockcro4!

Things!We!Don’t!Do!

Ne8lix!could!not!
build!new!

datacenters!fast!
enough!

Capacity!growth!is!acceleraKng,!unpredictable!
Product!launch!spikes!\!iPhone,!Wii,!PS3,!XBox!

Data*Center*

Out\Growing!Data!Center!
h;p://techblog.ne8lix.com/2011/02/redesigning\ne8lix\api.html!

37x!Growth!Jan!
2010\Jan!2011!

Datacenter!
Capacity!

High!Availability!

•  Cassandra!stores!3!local!copies,!1!per!zone!
– Synchronous!access,!durable,!highly!available!
– Read/Write!One!fastest,!least!consistent!\!~1ms!

– Read/Write!Quorum!2!of!3,!consistent!\!~3ms!

•  AWS!Availability!Zones!

– Separate!buildings!
– Separate!power!etc.!
– Close!together!

!

Remote!Copies!

•  Cassandra!duplicates!across!AWS!regions!
– Asynchronous!write,!replicates!at!desKnaKon!
– Doesn’t!directly!affect!local!read/write!latency!

•  Global!Coverage!
– Business!agility!
– Follow!AWS…!

•  Local!Access!
– Be;er!latency!
– Fault!IsolaKon!
!

3 3

3

3

Chaos!Monkey!

•  Make!sure!systems!are!resilient!
– Allow!any!instance!to!fail!without!customer!impact!

•  Chaos!Monkey!hours!
– Monday\Thursday!9am\3pm!random!instance!kill!

•  ApplicaKon!configuraKon!opKon!
– Apps!now!have!to!opt\out!from!Chaos!Monkey!

•  Computers!(Datacenter!or!AWS)!randomly!die!
– Fact!of!life,!but!too!infrequent!to!test!resiliency!

Architecture design control
Be sure you can auto-scale down!

Response to 2011 progress was that Netflix was a Unicorn,
and while it might work for us, it wasn’t relevant to others

State of the Cloud
Adrian Cockcroft @adrianco

Technology Fellow - Battery Ventures
August 2016

See www.battery.com for a list of portfolio investments

Previous Cloud Trend Updates
GigaOM Structure May 2014

D&B Cloud Innovation July 2015
GigaOM Structure November 2015

1

Trends from 2014: Noted as appropriate

Why am I here?

@adrianco’s job at the
intersection of cloud
and Enterprise IT,
looking for disruption
and opportunities.

%*&!”

By Simon Wardley http://enterpriseitadoption.com/

20142009

Disruptions in 2016
coming from server-
less computing and
teraservices.

In 2014 Enterprises finally embraced
public cloud and in 2015 serious

deployments are under way.
Oct 2014 Oct 2015

Some enterprise vendor
responses to cloud and container

ecosystem growth…

The ship is sinking, let’s re-brand as a submarine!

The ship is sinking, let’s merge with a submarine!

Look! we cut our ship in two really quickly!

Trends: Microservices

MicroXchg Berlin event where a
group of speakers including
@adrianco adopted the term

Microservices: Why, What and How
Adrian Cockcroft @adrianco

Technology Fellow - Battery Ventures
 October 2016

Typical reactions to my Netflix talks…

“You guys are
crazy! Can’t
believe it”

– 2009

“What Netflix is doing
won’t work”

– 2010 It only works for
‘Unicorns’ like

Netflix”
– 2011

“We’d like to do
that but can’t”

– 2012

“We’re on our way using
Netflix OSS code”

– 2013

What I learned from my time at Netflix

•Speed wins in the marketplace
•Remove friction from product development
•High trust, low process, no hand-offs between teams
•Freedom and responsibility culture
•Don’t do your own undifferentiated heavy lifting
•Use simple patterns automated by tooling
•Self service cloud makes impossible things instant

Observe

Orient

Decide

Act

Land grab
opportunity Competitive

Move

Customer Pain
Point

Analysis

JFDI

Plan Response

Share Plans

Incremental
Features

Automatic
Deploy

Launch AB
Test

Model
Hypotheses

BIG DATA

INNOVATION

CULTURE

CLOUD

Measure
Customers

Continuous
Delivery

Non-Destructive Production Updates

● “Immutable Code” Service Pattern

● Existing services are unchanged, old code remains in service

● New code deploys as a new service group

● No impact to production until traffic routing changes

● A|B Tests, Feature Flags and Version Routing control traffic

● First users in the test cell are the developer and test engineers

● A cohort of users is added looking for measurable improvement

What Happened?
Rate of change

increased

Cost and size and
risk of change

reduced

It’s what you know that isn’t so

● Make your assumptions explicit

● Extrapolate trends to the limit

● Listen to non-customers

● Follow developer adoption, not IT spend

● Map evolution of products to services to utilities

● Re-organize your teams for speed of execution

A Microservice Definition

Loosely coupled service oriented
architecture with bounded contexts

If every service has to be
updated at the same time
it’s not loosely coupled

If you have to know too much about surrounding
services you don’t have a bounded context. See the
Domain Driven Design book by Eric Evans.

Speeding Up The Platform

AWS Lambda is leading exploration of serverless architectures in 2016

Datacenter Snowflakes
• Deploy in months
• Live for years

Virtualized and Cloud
• Deploy in minutes
• Live for weeks

Container Deployments
• Deploy in seconds
• Live for minutes/hours

Lambda Deployments
• Deploy in milliseconds
• Live for seconds

Separate Concerns with Microservices

http://en.wikipedia.org/wiki/Conway's_law

● Invert Conway’s Law – teams own service groups and backend stores

● One “verb” per single function micro-service, size doesn’t matter

● One developer independently produces a micro-service

● Each micro-service is it’s own build, avoids trunk conflicts

● Deploy in a container: Tomcat, AMI or Docker, whatever…

● Stateless business logic. Cattle, not pets.

● Stateful cached data access layer using replicated ephemeral instances

Inspiration

What’s Missing?

@adrianco

Advanced Microservices Topics

Failure injection testing
Versioning, routing

Binary protocols and interfaces
Timeouts and retries

Denormalized data models
Monitoring, tracing

Simplicity through symmetry

@adrianco

Benefits of version aware routing

Immediately and safely introduce a new version
Canary test in production

Use DIY feature flags, , A|B tests with Wasabi

Route clients to a version so they can’t get disrupted
Change client or dependencies but not both at once

Eventually remove old versions
Incremental or infrequent “break the build” garbage collection

@adrianco

Timeouts and Retries

Connection timeout vs. request timeout confusion

Usually setup incorrectly, global defaults

Systems collapse with “retry storms”

Timeouts too long, too many retries

Services doing work that can never be used

@adrianco

Timeouts and Retries

Edge
Service

Good
Service

Good
Service

Bad config: Every service defaults to 2 second timeout, two retries

Edge
Service not
responding

Overloaded
service not
responding

Failed
Service

If anything breaks, everything upstream stops responding

Retries add unproductive work

@adrianco

Timeouts and Retries
Bad config: Every service defaults to 2 second timeout, two retries

Edge
service

responds
slowly

Overloaded
service

Partially
failed

service

First request from Edge timed out so it ignores the successful
response and keeps retrying. Middle service load increases as

it’s doing work that isn’t being consumed

@adrianco

Timeout and Retry Fixes

Cascading timeout budget
Static settings that decrease from the edge

or dynamic budget passed with request

How often do retries actually succeed?
Don’t ask the same instance the same thing

Only retry on a different connection

@adrianco

Timeouts and Retries

Edge
Service

Good
Service

Budgeted timeout, one retry

Failed
Service

3s
1s
1s

Fast fail
response
after 2s

Upstream timeout must always be longer than
total downstream timeout * retries delay

No unproductive work while fast failing

@adrianco

Timeouts and Retries

Edge
Service

Good
Service

Budgeted timeout, failover retry

Failed
Service

3s 1s

For replicated services with multiple instances
never retry against a failed instance

No extra retries or unproductive work

Good
Service

Successful
response
delayed 1s

@adrianco

“We see the world as increasingly more complex and chaotic
because we use inadequate concepts to explain it. When we
understand something, we no longer see it as chaotic or complex.”

Jamshid Gharajedaghi - 2011
Systems Thinking: Managing Chaos and Complexity: A Platform for Designing Business Architecture

I wanted to learn Go, and build something I
could talk about at events. I ported an actor-

based simulator from Occam to Go and
generated large complex simulated microservice

graphs with it using Go channels as networks.

Then I gave a talk at Gophercon about the
history of channels…

Communicating Sequential Goroutines
Adrian Cockcroft @adrianco

Technology Fellow - Battery Ventures
 July 2016

Agenda
1978 Communicating Sequential Processes
1983 Occam
 How Channels Work
1992 Pi-Calculus
2013 The Life of Occam-Pi
2006 Occam-Pi based simulation
 Pi-Calculus ideas in Go
 Go Applications

“…the concepts and notations
introduced in this paper (although
described in the next section in the
form of a programming language
fragment) should not be regarded
as suitable for use as a
programming language, either for
abstract or for concrete programming.
They are at best only a partial solution
to the problems tackled.”

CSP Issues:

Not a full language
Hard to read

Process addressing

David May’s Occam Language
Extremely simple and elegant

implementation of CSP as a language

Adds named channels
Designed as the assembly language for Transputer hardware

Comparing Occam and Go
Parallel Channel Assignment

func main() {
var x, y int
x = 1
c := make(chan int)
var wg sync.WaitGroup
wg.Add(2)
go func() { defer wg.Done(); c <- x }()
go func() { defer wg.Done(); y = <-c }()
wg.Wait()
fmt.Println(y)

}

PROC main(CHAN out)
 VAR x,y:
 SEQ
 x := 1
 CHAN c:
 PAR
 c!x
 c?y
 out!y
:

Pi-Calculus
Robin Milner 1992

We present the π-calculus, a
calculus of communicating
systems in which one can

naturally express processes
which have changing

structure. Not only may the
component agents of a

system be arbitrarily linked,
but a communication

between neighbours may
carry information which

changes that linkage.

It’s easy to show that…

This paper is
incomprehensible!

A triumph of notation
over comprehension.

Simple equations such as…

…looks at the history of
occam, its underlying
philosophy (Ockham’s
Razor), its semantic

foundation on Hoare’s
CSP, its principles of

process oriented design
and its development over
almost three decades into
occam-π (which blends in
the concurrency dynamics

of Milner’s π-calculus).

Go-π

Dynamic Channel Protocol
Actor Pattern

Partitioned Service Registry
Logging and Tracing

Dynamic Channel Protocol
https://github.com/adrianco/spigo/tree/master/tooling/gotocol

Imposition/Intention? https://en.wikipedia.org/wiki/Promise_theory

ch <-gotocol.Message{gotocol.GetRequest, listener, now, ctx, "why?"}

// Message structure used for all messages, includes a channel of itself
type Message struct {

Imposition Impositions // request type
ResponseChan chan Message // place to send response messages
Sent time.Time // time at which message was sent
Ctx Context // message context
Intention string // payload

}

Simulated Microservices

Model and visualize microservices
Simulate interesting architectures
Generate large scale configurations
Eventually stress test real tools

Code: github.com/adrianco/spigo
Simulate Protocol Interactions in Go
Visualize with D3
See for yourself: http://simianviz.surge.sh
Follow @simianviz for updates

ELB Load Balancer

Zuul
API Proxy

Karyon
Business Logic

Staash
Data Access Layer

Priam
Cassandra Datastore

Three
Availability
Zones

Denominator
DNS Endpoint

Conclusions
CSP is too limited
π-Calculus syntax is incomprehensible
Occam-Pi makes CSP and π-Calculus readable
Go concurrency syntax is clumsy in places but works
Showed some useful channel based Go-π idioms
Pass channels over channels for dynamic routing
Go works well for actor like simulation

Adrian signed to a new label (AWS) at the end of
2016 and now had a much bigger production
budget for making slides look cool, and a PR

department to keep him from being too
controversial!

The New De-Normal

Monolithic
Databases

Kitchen Sink
Analogy

De-normalized

Expensive,
Hard to Create
and Run

Monolith

Expensive,
Hard to Create
and Run

ic
DatabaseMonolith

Database Schema
Entity Relationship

Database Schema
Entity Relationship

Database Schema
Entity Relationship

Kitchen Sink
Analogy

Kitchen Sink
AnalogyCleanup

GLASSES

GLASSES

Kitchen Sink
Cleanup

GLASSES

Kitchen Sink
Cleanup

Kitchen Sink
Cleanup

GLASSES

Kitchen Sink
Cleanup

GLASSES

Kitchen Sink
Cleanup

GLASSES

Kitchen Sink
Cleanup

GLASSES

Consistency
Problem
How Many Complete
Sets Are There?

Consistency
Problem
How Many Complete
Sets Are There?

Consistency
Problem
How Many Complete
Sets Are There?

GLASSES

Adding a New
Use Case

GLASSES

Adding a New
Use Case

SAKE SET

GLASSES

BOWLS

Cloud Makes
it Easy to Add
New Databases

Untangle and
Migrate Existing
“Kitchen Sink”
Schemas

Untangle and
Migrate Existing
“Kitchen Sink”
Schemas

I started to collect stories, scribbled them as rough ideas
on my iPad with Apple pencil, sent them to the graphic

designer, and got some cool decks back…

Conventional Development

20 people 9 months 2 months left

+ =
Poor

Progress

Conventional Development
2 months left

Progress

Friday

Lunchbreak

Conventional Development
2 months left

Progress

Friday

Lunchbreak

AWS Lambda

Serverless

Serverless Development
2 months left

Progress

Friday

AWS Lambda

Serverless

Home

SaturdaySundayMonday

Serverless Development
2 months left

Progress

AWS Lambda

Serverless

Office

Monday

PROJECT
COMPLETED!

Serverless Development
2 months left

Progress

AWS Lambda

Serverless

A whole
month later

Team finally agrees
It works and is secure

Serverless Development

Shipped
application
1 month early

What is different about serverless?

REST JSON
Fast binary
encodingsSplitting

Monoliths

Splitting
Monoliths

Microservices

Microservices
to Functions

Amazon
Kinesis

Amazon API
Gateway

Amazon SNS

Amazon S3

Amazon
DynamoDB

Amazon
SQS

Standard building brick services
provide standardized platform
capabilities

Amazon
Kinesis

Amazon API
Gateway

Amazon SNS

Amazon S3

Amazon
DynamoDB

Amazon
SQS

Microservices
to Functions

Business Logic
Events connect
building blocks

Amazon
Kinesis

Amazon API
Gateway

Amazon SNS

Amazon S3

Amazon
DynamoDB

Amazon
SQS

Microservices
to Functions

Amazon
Kinesis

Amazon API
Gateway

Amazon SNS

Amazon S3

Amazon
DynamoDB

Amazon
SQS

Microservices
to Functions

Amazon
Kinesis

Amazon API
Gateway

Amazon SNS

Amazon S3

Amazon
DynamoDB

Amazon
SQS

Microservices
to FunctionsEphemeral

Microservices
to
Functions

Ephemeral

Microservices
to
Functions

Ephemeral
Amazon API

Gateway

Amazon
SQS

Microservices
to
Functions

Ephemeral

Amazon
Kinesis

Amazon API
Gateway

Amazon
DynamoDB

Microservices
to
Functions

Ephemeral
Amazon API

Gateway

Amazon SNS

Amazon S3

Amazon
Kinesis

Amazon API
Gateway

Amazon SNS

Amazon S3

Amazon
DynamoDB

Amazon
SQS

Microservices
to
Functions

Ephemeral
When the system is idle,
it shuts down and costs
nothing to run

So WHY is it so fast to
write a serverless app?
An analogy…

What is the
user need?

What is the
problem you are
trying to solve?

Make a model spaceship
quickly and cheaply

Design a prototype

Traditional Development

Carve from
modelling clay

Traditional Development

Make molds

Traditional Development

Produce injection molded parts

Traditional Development

Assemble parts

Traditional Development

Sell finished toy

Traditional Development

Design
a prototype

Carve from
modelling clay

Make molds Produce injection
molded parts

Assemble
parts

Sell finished
toy

Traditional Development

Traditional DevelopmentRapid

Big bag of blocks Instructions A few hours

A few
hours

Big bag of
blocks

Instructions

A finished toy

DevelopmentRapid

A few
hours

A finished toy

Lacks fine detail

Recognizable, but not exactly what
was asked for

Easy to modify and extend

DevelopmentRapid

A few
hoursInstructions

Take a group of Lego bricks…

…and form a new custom brick

A more specialized common component

Optimization

Full custom design

Months of work

Custom components may be
fragile and need to be debugged

and integrated

Too many detailed choices

Long decision cycles

Traditional
Building blocks assembly

Hours of work

Standard reliable components
scale and are well understood

and interoperable

Need to adjust requirements to
fit the patterns available

Constraints tend to reduce debate
and speed up decisions

Rapid Development

Custom code and services

Lots of choices of frameworks
and API mechanisms

Where needed, optimize serverless
applications by also building services using
containers to solve for anything serverless

doesn’t do well… yet.

Serverless events and functions

Standardized choices

Combine building blocks including:

AWS Lambda

API Gateway, EventBridge

Amazon SNS, SQS

Amazon DynamoDB

AWS Step Functions

Containers Serverless

So… why doesn’t everyone use
serverless first?
Objections and limitations

Note: See Re:Invent 2019 SVS343

There are answers to all of these…

Language support

Objections Summary

Scalability, Resilience

Startup and network latency

Databases/storage interfacing

Security

State handling, event processing

Limited run duration

Complex configs

Patterns, Portability Too hard to get started

Adrian retired from Amazon in the middle of
2022 and is now working as an advisor, analyst

and consultant via OrionX.net

Adrian Cockcroft - OrionX.net
@adrianco - @DevSusOps - Oct 2022

DevSusOps
Adding sustainability concerns to development and operations

Why does sustainability matter?

Leave the world habitable for future generations

Regulatory compliance
Physical risks to business assets

Market transition risks

Reduced costs now or in the future

“Green” market positioning Employee enthusiasm

Social license to operate

What can we do about it?

Optimize code

Choose faster languages and runtimes

Efficient algorithms

Faster implementations

Reduce logging

Reduce retries and work amplification

Higher utilization

Automation

Relax over-specified requirements

Archive and delete data sooner

Deduplicate data

Choose times and locations carefully

Development Operations

For workload optimization we need
directional and proportional guidance:

Cloud Carbon Footprint tool - Open source, uses billing data as input
Maintains a set of reasonable estimates/guesses for carbon factors

https://www.cloudcarbonfootprint.org

Green Software Foundation Software Carbon Intensity - SCI
A model for reporting software impact per business operation

https://greensoftware.foundation/projects/

AWS Well Architected Pillar for Sustainability
Guidance on how to optimize development and operations for carbon

https://docs.aws.amazon.com/wellarchitected/latest/sustainability-pillar/sustainability-pillar.html

Where is all this going to be in a few years?
Monitoring tools will report carbon

Cloud providers will (all eventually) have detailed metrics

EU and US cloud regions are close to zero carbon now
Asian regions will move to zero carbon by 2025

(All providers have the same problem with regional policies)

That’s all folks!

Unless there’s time for an encore
and some drinks?

Analysis
> summary(response)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.909 2.550 2.820 3.086 3.214 67.680

> quantile(response,c(0.95,0.99))
95% 99%

4.149556 6.922115
> sd(response)
1.941328
> mean(response) + 2 * sd(response)
6.968416

https://github.com/adrianco/chp

Pineapple Dalek says
INEBRIATE!
INEBRIATE!

Scalability plots generated using appdynamics.com

Well behaved Lock Contention

Oscillating, thread shortage

Looping autoscaled

Bottlenecks

https://github.com/adrianco/chp
Cockcroft Headroom Plot

Ne#lix'in'the'Cloud'

Nov'6,'2010'
Adrian'Cockcro:'
@adrianco'#ne#lixcloud'

h=p://www.linkedin.com/in/adriancockcro:'

Replacing*Datacenter*Oracle*with*
Global*Apache*Cassandra*on*AWS!

July!11,!2011!
Adrian!Cockcro4!
@adrianco!#ne8lixcloud!

h;p://www.linkedin.com/in/adriancockcro4!

State of the Cloud
Adrian Cockcroft @adrianco

Technology Fellow - Battery Ventures
August 2016

See www.battery.com for a list of portfolio investments

Microservices: Why, What and How
Adrian Cockcroft @adrianco

Technology Fellow - Battery Ventures
 October 2016

Communicating Sequential Goroutines
Adrian Cockcroft @adrianco

Technology Fellow - Battery Ventures
 July 2016

Adrian Cockcroft - OrionX.net
@adrianco - @DevSusOps - Oct 2022

DevSusOps
Adding sustainability concerns to development and operations

https://soundcloud.com/adrian-cockcroft/black-tiger-dont-look-back
https://www.slideshare.net/adrianco - Netflix era decks
https://www.slideshare.net/adriancockcroft - Battery Ventures decks
https://github.com/adrianco/slides - AWS decks and later including a pdf of these slides!
https://www.youtube.com/@adriancockcroft

Adrian's Greatest Hits, B-Sides and Re-issues

Thanks! Any questions?
Adrian Cockcroft | YOW | December 2022

@adrianco@mastodon.social

