
Defining reliability in platform engineering

Jez Humble, SRE, Google Cloud • sre.google • twitter.com/googlesre
Slides by Jez Humble, Narayan Desai, Brent Bryan

Why is my app SLOw?

https://sre.google/
https://twitter.com/googlesre

Platform engineering is all fun and games until platform customers start
complaining about their apps running slowly. Is it the app code or the
platform? This talk looks at how Google’s Serverless SRE team detects
platform-level latency regressions before users, measures the impact of
regressions, and tracks performance over time. We’ll discuss the limitations
of SLOs in this context and how to take a statistical approach that gives a
customer-centric picture of the performance of our platform instead.

Why is my app SLOw? Defining reliability in platform
engineering

Acknowledgements

Serverless SRE team: Alan Hawrylyshen, Aleksej Truhan, Anna Ayvazyan,
Anna-Kaisa Pietilainen, Eric Ross, Fae Hutter, Francis Tang, Hayley Farnworth, Ib
Lundgren, Inderjeet Sharma, Jez Humble, Jim Olwell, Jimmy Chen, Joan Grau, Kira
Zhovnirovskii, LD Maya, Nick O’Connor, Omar Morsi, Pascal Bouchareine, Steve
Jordan, Tong Yin, Will Patterson, Wolfram Pfeiffer, Yi Chen, Yuchen Ying

Kraken team: Jacob Frelinger, Jayasree Beera, Jeff Borwey, Brent Bryan, Narayan
Desai, Tyler Sanderson, Sam Schneider

Also Chris Heiser, Greg Block, Eric Brewer, Jenny Sager, Kevin Tian, Niall Murphy,
Nicole Forsgren

Deploy containers / apps from the command line and we take care of all the
infrastructure / scaling. You can scale down to zero and up to thousands of
instances in seconds.

In other words, our business model is selling you the ability to apply severe
stress to our platform.

It works really well!

Serverless platform is amazing

Serverless platform

User
Google’s
networking stuff
near the user

Networking stuff
near your app

Serverless regional data planeServerless regional
control plane

Appservers

Your instance (not to scale!)

● You changed some code / config
● Change in latency/availability of dependencies
● Change in traffic patterns to your app / the platform / Google infrastructure
● Platform change
● Some config change somewhere in Google
● Noisy neighbor(s)
● DoS attack / abuse
● Suboptimal clone binpacking
● … (so many things!)

“My app is slow”

The platform is slow

Time to talk to the
GCP support team!

Latency just went
up by 100ms

My app is slow,
better raise a
support
request

Why has my website
ground to a halt? I haven’t
made any changes today!

Are you sure?
Maybe we did
something wrong?

I seem to be
getting a lot of
429s, what’s up
with that?

We’re getting a
lot of customer
complaints but
it’s not us

Total (end-to-end) latency distribution

Request delivery latency

● A metric that represents the customer experience
● Combinable across projects / cells / regions
● Can be used to detect anomalies affecting multiple customers (likely platform

issues)
● Computationally cheap (high QPS)
● Principle-based

Goal

Reliability

Availability

Is the service there when you need it?

Performance

How effectively is work performed?

Correctness

Does a service do what’s expected?

Availability

✔ Count the number of failed requests

Reliability in Practice

Availability

✔ Count the number of failed requests
✘ 400s vs 500s
✘ Deadlines
✘ Malformed Requests
✘ Retries Magnify Errors

✘ Workload dependent
✘ Probers are narrow

Correctness

✔ Lots of tests
✔ Canary analysis

<Request>

Performance

✔ Set P99 latency SLO

✔ Create Probers

✘ Limited, non-adaptive coverage

✘ Hope is not a strategy

<Data>

Service

Applying to the Model

Service

Reliability

PerformanceWorkload

La
te

nc
y

Applying to the Model

Service

Reliability

PerformanceWorkload

La
te

nc
y

Stationarity

2𝜎 Technique

Hypothesis:
Self-Similar Workloads Should Have Consistent Performance

Technique Overview:
● Partition workloads into Cohorts ← Approximate Intent via Workload Features

● Build Performance Baselines ← Estimate Distributional Form (e.g. Normal)

● Estimate Likelihood of Delivered Performance ← Test For Stationary

2𝜎 Technique

Hypothesis:
Self-Similar Workloads Should Have Consistent Performance

Technique Overview:
● Partition workloads into Cohorts ← Approximate Intent via Workload Features

● Build Performance Baselines ← Estimate Distributional Form (e.g. Normal)

● Estimate Likelihood of Delivered Performance ← Test For Stationary

Result:
● Set of Events with Predicted Likelihoods

● Time-series of summary statistics describing concentration of extreme outliers

Hypothesis:
Self-Similar Workloads Should Have Consistent Performance

Leveraging Structure: 2𝜎 Technique
“Model”

Historical Service Data Partition into Cohorts Compute Baselines

Cohort
Metrics

Leveraging Structure: 2𝜎 Technique
“Model”

“Measure”

Historical Service Data Partition into Cohorts Compute Baselines

Current Service Data Compute Z-Scores Monitor Z-Scores

Cohort
Metrics

Leveraging Structure: 2𝜎 Technique
“Model”

“Measure”

Historical Service Data Partition into Cohorts Compute Baselines

Current Service Data Monitor Z-ScoresCompute Z-Scores

Cohort
Metrics

Mechanics

Strategy:
● Aggregate z-scores across workloads

● Monitor fraction of workloads with z-scores ≥ 2, in windows

● Expect 2-5% 2𝜎 outliers in any given window

● When >10% of workloads are >2𝜎, BE AFRAID.

Detection is based on fraction of workloads exhibiting regression

Approximations Unlock Leverage

Assume:
● Metric distributions can be approximated by parameterized

distribution

● Modeling errors excluded via baseline qualification

Then:
● Workload z-scores are a proxy for likelihood

● Workload performance should be IID

● Z-scores follow a standard Normal distribution

● Baseline distribution computation is “embarrassingly parallelizable”

● Z-scores are combinable (across cohorts!)

Assume:
● Metric distributions can be approximated by parameterized

distribution

● Modeling errors excluded via baseline qualification

Overload score

Impact analysis

Frequently Asked Questions

● Do performance metrics actually follow Normal distributions?

● How do you know if approximations hold?

● How do you define cohorts?

● How do deal with “singleton” / infrequent workloads?

● Ok, but does this really work?

Backtesting

● Hard for people to interpret without first understanding stats words
● Cohort coverage ~40-60%
● Doesn’t tell you why there’s a problem (symptom-based not cause-based)*

Limitations

*Note that symptom-based is a feature not a bug

Other Applications

Streamlined Diagnosis

Total Time

I/O Time

Queue Time Execution
Time

…

Total Time

I/O Time

Approximate Cohort A/B Testing

Conclusions

Key Observations
● We can reliably detect and measure the impact of platform regressions

● Reliability is a shared property (between customer & service)
○ Reconstruction of end to end behavior is critical

● Metric combinability is critical for analysis
● Variability is what customers actually care about
● Distributed systems often produce decorrelation

○ We can measure it, and its absence
● Workload correlation can identify proximate causes

2σ method
● Incorporates user intent in order to model expected performance
● Tests an IID hypothesis to infer when systems diverge from expected behavior
● To produce data products that are comparable and combinable

We use these data products in order to:
● Perform change point detection when systems diverge from expectations
● Estimate the duration, severity, and specific impact of these excursions
● Localize subsystem performance problems
● Compare relative and absolute performance over time and arbitrary workload

dimensions
● Directly measure correlation across subsystems and isolation domains

Resulting in:
● Calibration-free insights that characterize the consistency of a system
● The ability to test system invariants continuously
● Data building blocks that can be reprocessed to answer many questions

See https://www.usenix.org/conference/srecon22americas/presentation/desai

Book covers copyright O’Reilly Media. Used with permission.

Find Google SRE publications—including the SRE Books, articles, trainings,
and more—for free at sre.google/resources.

https://sre.google/resources/

Questions

