
Peter Sbarski | @sbarski

Dancing with Serverless
December 2022

About Me
• AWS Serverless Hero

• Author of Serverless Architectures on AWS

• Organiser of the Melbourne Serverless Meetup

• Former VP Education & Research at A Cloud Guru

• Former head of Serverlessconf

Serverless Architectures on AWS (2nd Edition)

Early Days at ACG
Teaching the world to cloud

Video Lessons
Quiz Engine
Online Store

Sign Up / Login
Scale Effortlessly

Low Operational Overhead

Starting up in 2015
Serverless Monolith

Website
(SPA)

API Gateway

Lambda

Authentication with Auth0

Our database

Cloudfront

Videos in S3

Evolution
Teams of developers working in parallel

GraphQL EndpointAPI Gateway

Microservice #B

DynamoDB

CloudFront S3

Microservice #A
DynamoDB

We evolved our architecture
And the costs weren’t too bad either

Service Cost

Key Management Service $25.26

Simple Storage Service (S3) $108.23

Config $109.84

Elastic Transcoder $154.17

API Gateway $192.14

Developer Support $314.59

Redshift $371.50

DynamoDB $373.54

Lambda $706.49

CloudWatch $3,142.73

CloudFront $5,099.85

• 289 Lambda Functions

• 19 Micro-services

• 3.68TB of data in S3

• 107m Lambda Invocations / month

• 45m API Requests / month

• 3.8+ TB of data via CloudFront per day

• 650K+ users

Maturity
Gaining team efficiency and speed

GraphQL
Endpoint

API Gateway

CloudFront S3

Microservice #B

Microservice #C

DynamoDB

DynamoDB

Service Discovery

DynamoDB

Microservice #A

Common Benefits
When things go right

• It’s fast to build (shortened time to market)

• Massive scale and initially can be cheap or free

• It’s operationally efficient

• It’s not Kubernetes

• Large architectural pivots/changes are possible

• It’s fun - developers love it

Common Complaints
Why can’t things just be easy

• Hard to dev locally

• Hard to debug

• Hard to observe and monitor

• Hard or impossible to do certain things (e.g. long-running tasks)

• Lock-in is a problem. Maybe?

How I build today
Back to working on my own

• Back to building on my own

• Serverless first approach makes technical decisions easier

• Have to be fast and reduce operational overhead to zero

• Could potentially need a lot of compute down the road

• Leverage as many AWS services as possible

• Solve local dev & debugging

fatfireapp.com
Learning & Optimising Finance

Serverless Stack (SST)
https://sst.dev

https://sst.dev

Serverless Stack (SST)
Local Dev. Absolutely Brilliant.

Observability
https://lumigo.io

Fatfire Architecture

Core Service Exchange Service History Service

Cleanup Service Analytics Service

Tax ServiceInsurance Service Receipts Service

Integration Service

Fatfire Architecture

Core Service

Client

Asset Database

Portfolio Database

API

Update Asset

Get Portfolio

Insurance Service

Insurance DatabaseUpdate InsuranceAPI

Userfront Authentication

Insurance Service

Insurance DatabaseUpdate InsuranceAPI

Core Service

Asset Database

Portfolio Database

API

Update Asset

Get Portfolio

Cleanup Service

Cleanup StuffAPI

Insurance Service

Insurance DatabaseUpdate InsuranceAPI

Core Service

Asset Database

Portfolio Database

API

Update Asset

Get Portfolio

DynamoDB
Streams

Publish Events

Subscribe to
Events

Remember this architecture?

GraphQL EndpointAPI Gateway

Microservice #B

DynamoDB

Microservice #A
DynamoDB

Write API Insurance DatabaseUpdate Database

DynamoDB
Streams

Process LambdaMaterialised View (Read)Read API Get Data

Web Sockets
With API Gateway

Connect with a websocket

Receive connection ID and
information about the caller

Store caller information in Dynamo

Look up caller information

Invoke a callback URL with the appropriate connection ID

Send data via a socket back to the client

Insurance DatabaseWebsocket API Update Database

DynamoDB
Streams

Process LambdaMaterialised View (Read)

DynamoDB
Streams

Websocket APIConnection IDs Client Update

Write API Insurance DatabaseUpdate Database

DynamoDB
Streams

Process LambdaSNS Topic

Mullet Architecture
With thanks to Tim Wagner

Insurance Service

Insurance Database

Update InsuranceAPI

EventBridge

Core Service

Asset Database

Portfolio Database

API

Update Asset

Get Portfolio

Publish Events

Cleanup Service

Subscribe to
Events

Subscribe to
Events

Step Functions
Coordinate Distributed Applications

Parallel Architecture
Dealing with unexpected problems

• Take a complex problem and solve it with Lambda by applying techniques like
MapReduce & Parallelisation

• Can you transcode (i.e. encode) a large video file with a Serverless-only
approach?

Divide and conquer
Using the Lambda supercomputer

Video File

Original

Segment (1080p)

Segment (1080p)

Segment (1080p)

Segment (1080p)

Split

Segment (720p)

Segment (720p)

Segment (720p)

Segment (720p)

Convert

Segment (720p)

Segment (720p)

Merge

Final Video

(720p)

Final

Read more: https://bit.ly/3wJOdvQ

https://bit.ly/3wJOdvQ

Parallel Computing with Lambda & Step Functions
Read more: https://bit.ly/3wJOdvQ

https://bit.ly/3wJOdvQ

Serverless Video Transcoder
Parallel and conquer

34MB MP4 (00:43, 1920×1080)
77MB MP4 (6:49, 2048×1152)

100MB MP4 (59:56, 1280×720)
350MB MP4 (07:45, 2560×1440)

420MB MKV (01:02, 3840 x 1606)
1GB MKV (57:57, 1280 x 718)

Serverless
Lambda

11 seconds
26 seconds

86 seconds
35 seconds

112 seconds
185 seconds

Traditional
EC2 (t2.large)

32 seconds
144 seconds

1073 seconds
432 seconds

157 seconds
4320 seconds

MacBook Pro
16GB 3.5GHz i7

18 seconds
78 seconds

592 seconds
224 seconds

101 seconds
2367 seconds

Read more: https://bit.ly/3wJOdvQ

https://bit.ly/3wJOdvQ

Common Complaints
Why can’t things just be easy

• Hard to dev locally

• Hard to debug

• Hard to observe and monitor

• Hard or impossible to do certain things (e.g. long-running tasks)

• Lock-in is a problem ?

Modern Applications
Some lessons were learnt

• Security/compliance first

• Use microservices

• Serverless where possible

• CI/CD

• Monitor, monitor, monitor!

• https://youtu.be/IPOvrK3S3gQ

• Serverless monoliths can be OK!

• Automation is a must

• Think through your testing strategy

• Experimentation and architectural
changes are easier

• Serverless (& services) > containers

https://youtu.be/IPOvrK3S3gQ

Ampt
https://getampt.com

Thank you

Serverless Architectures on AWS:  
https://www.manning.com/books/serverless-
architectures-on-aws-second-edition

Fatfire: https://fatfireapp.com

Ampt: https://getampt.com

The Value Flywheel Effect: 
https://itrevolution.com/product/the-value-
flywheel-effect/

