
Large-Scale Architecture
The Unreasonable 

Effectiveness of Simplicity

Randy Shoup 
@randyshoup



Background

@randyshoup



• 1995 Monolithic Perl

• 1996-2002 v2 
o Monolithic C++ ISAPI DLL
o 3.4M lines of code
o Compiler limits on number of methods per class

• 2002-2006 v3 Migration
o Java “mini-applications”
o Shared databases

• 2012 v4 Microservices

• 2017 v5 Microservices
@randyshoup

eBay Architecture



• 1995-2001 Obidos
o Monolithic Perl / Mason frontend over C 

backend
o ~4GB application in a 4GB address space
o Regularly breaking Gnu linker
o Restarting every 100-200 requests for memory 

leaks
o Releasing once per quarter

• 2001-2005 Service Migration
o Services in C++, Java, etc.
o No shared databases

• 2006 AWS launches@randyshoup

Amazon Architecture



No one starts with microservices
…

Past a certain scale, everyone ends 
up with microservices

@randyshoup



Large-Scale Architecture
•Simple Components

•Simple Interactions

•Simple Changes

•Putting It All Together



Large-Scale Architecture
•Simple Components

•Simple Interactions

•Simple Changes

•Putting It All Together



Modular Services
• Service boundaries match the problem 

domain

• Service boundaries encapsulate 
business logic and data
o All interactions through published service interface
o Interface hides internal implementation details
o No back doors

• Service boundaries encapsulate 
architectural -ilities
o Fault isolation
o Performance optimization
o Security boundary

@randyshoup



Orthogonal Domain Logic
• Stateless domain logic

o Ideally stateless pure function
o Matches domain problem as directly as possible
o Deterministic and testable in isolation
o Robust to change over time

• “Straight-line processing”
o Straightforward, synchronous, minimal branching

• Separate domain logic from I/O
o Hexagonal architecture, Ports and Adapters
o Functional core, imperative shell

@randyshoup



Sharding
• Shards partition the service’s “data space” 

o Units for distribution, replication, processing, storage
o Hidden as internal implementation detail

• Shards encapsulate architectural -ilities
o Resource isolation 
o Fault isolation
o Availability
o Performance

• Shards are autoscaled
o Divide or scale out as processing or data needs increase
o E.g., DynamoDB partitions, Aurora segments, Bigtable 

tablets

@randyshoup



Service Layering
• Common services provide and 

abstract widely-used capabilities

• Service ecosystem
o Services call others, which call others, etc.
o Graph, not a strict layering

• Services grow and evolve over time
o Factor out common libraries and services as 

needed
o Teams and services split like “cellular mitosis”

@randyshoup



Common Platform
• “Paved Road”

o Shared infrastructure
o Standard frameworks
o Developer experience
o E.g., Netflix, Google 

• Separation of Concerns
o Reduce cognitive load on stream-aligned 

teams
o Bound decisions through enabling constraints

@randyshoup



Large-scale organizations often 
invest more than 50% of 
engineering effort in platform 
capabilities 

@randyshoup



Evolving Services
• Variation and Natural Selection

o Create / extract new services when needed to 
solve a problem

o Services justify their continued existence through 
usage

o Deprecate services when they are no longer 
used

• Domains grow and divide over 
time

@randyshoup



“Every service at 
Google is either 
deprecated or not 
ready yet.”

@randyshoup



Large-Scale Architecture
•Simple Components

•Simple Interactions

•Simple Changes

•Putting It All Together



Event-Driven
• Communicate state changes as 

stream of events
o Statement that some interesting thing 

occurred
o Ideally represents a semantic domain event

• Decouples domains and teams
o Abstracted through a well-defined 

interface
o Asynchronous from one another

• Simplifies component 
implementation

@randyshoup



Services and Events
• Events are a first-class part of a service interface

• A service interface includes
o Synchronous request-response (REST, gRPC, etc)
o Events the service produces
o Events the service consumes
o Bulk reads and writes (ETL)

• The interface includes any mechanism for getting 
data in or out of the service (!)

@randyshoup



Immutable Log
• Store state as immutable log of events

o Event Sourcing

• Often matches domain
o E.g., Stitch Fix order processing / delivery state

• Log encapsulates architectural –ilities
o Durable
o Traceable and auditable
o Replayable
o Explicit and comprehensible

• Compact snapshots for efficiency

@randyshoup



Immutable Log
• Example: Stitch Fix order states

o History of the states of a order

Request a fix fix_scheduled
Assign fix to warehouse fix_hizzy_assigned
Assign fix to a stylist fix_stylist_assigned
Style the fix fix_styled
Pick the items for the fix fix_picked
Pack the items into a box fix_packed
Ship the fix via a carrier fix_shipped
Fix travels to customer fix_delivered
Customer decides, pays fix_checked_out



Embrace Asynchrony
• Decouples operations in time

o Decoupled availability
o Independent scalability
o Allows more complex processing, more 

processing in parallel
o Safer to make independent changes

• Simplifies component 
implementation

@randyshoup



Embrace Asynchrony
• Invert from synchronous call 

graph to async dataflow
o Exploit asymmetry between writes and 

reads
o Can be orders of magnitude less 

resource intensive

@randyshoup



Large-Scale Architecture
•Simple Components

•Simple Interactions

•Simple Changes

•Putting It All Together



Incremental Change
• Decompose every large change into small 

incremental steps

• Each step maintains backward / forward 
compatibility of data and interfaces

• Multiple service versions commonly coexist
o Every change is a rolling upgrade
o Transitional states are normal, not exceptional



Continuous Testing
• Tests help us go faster

o Tests are “solid ground”
o Tests are the safety net

• Tests make better code
o Confidence to break things
o Courage to refactor mercilessly

• Tests make better systems
o Catch bugs earlier, fail faster

@randyshoup



Developer Productivity
• 75% reading 

existing code

• 20% modifying 
existing code

• 5% writing new 
code

https://blogs.msdn.microsoft.com/peterhal/2006/01/04/what-do-programmers-really-do-anyway-aka-part-2-of-the-yardstick-saga/

@randyshoup

https://blogs.msdn.microsoft.com/peterhal/2006/01/04/what-do-programmers-really-do-anyway-aka-part-2-of-the-yardstick-saga/


Developer Productivity
• 75% reading 

existing code

• 20% modifying 
existing code

• 5% writing new 
code

https://blogs.msdn.microsoft.com/peterhal/2006/01/04/what-do-programmers-really-do-anyway-aka-part-2-of-the-yardstick-saga/

@randyshoup

https://blogs.msdn.microsoft.com/peterhal/2006/01/04/what-do-programmers-really-do-anyway-aka-part-2-of-the-yardstick-saga/


Continuous Testing
• Tests make better designs

o Modularity
o Separation of Concerns
o Encapsulation

@randyshoup



“There’s a deep synergy between 
testability and good design. All of the 
pain that we feel when writing unit tests 
points at underlying design problems.”

@randyshoup

-- Michael Feathers



Test-Driven Development

• è Basically no bug tracking 
system (!)
o “Inbox Zero” for bugs
o Bugs are fixed as they come up
o Backlog contains features we want to 

build
o Backlog contains technical debt we want 

to repay

@randyshoup



Canary Deployments
• Staged rollout

o Go slowly at first; go faster when you gain confidence

• Automated rollout / rollback
o Automatically monitor changes to metrics 
o If metrics look good, keep going; if metrics look bad, roll back

• Make deployments routine and boring

@randyshoup



Feature Flags
• Configuration “flag” to enable / disable a feature 

for a particular set of users
o Independently discovered at eBay, Facebook, Google, etc.

• More solid systems
o Decouple feature delivery from code delivery
o Rapid on and off
o Develop / test / verify in production

@randyshoup



Continuous Delivery
• Deploy services multiple times per day

o Robust build, test, deploy pipeline
o SLO monitoring
o Synthetic monitoring

• More solid systems
o Release smaller, simpler units of work
o Smaller changes to roll back or roll forward
o Faster to repair, easier to understand, simpler to diagnose
o Increase rate of change and reduce risk of change

@randyshoup



• Cross-company Velocity Initiative to 
improve software delivery
o Think Big, Start Small, Learn Fast
o Iteratively identify and remove bottlenecks for teams 
o “What would it take to deploy your application every 

day?”

• Doubled engineering productivity
o 5x faster deployment frequency
o 5x faster lead time
o 3x lower change failure rate
o 3x lower mean-time-to-restore

• Prerequisite for large-scale architecture 
changes@randyshoup

Continuous Delivery



è 44% more time 
on features vs. 
maintenance

Continuous Delivery

@randyshoup



è 2.5x more likely 
to exceed goals

o Profitability
oMarket share
o Productivity

Continuous Delivery

@randyshoup



Large-Scale Architecture
•Simple Components

•Simple Interactions

•Simple Changes

•Putting It All Together



System of Record
• Single System of Record

o Every piece of data is owned by a single service
o That service is the canonical system of record for that data

• Every other copy is a read-only, non-authoritative cache

customer-service
styling-service

customer-search

billing-service

@randyshoup



Shared Data
Option 1: Synchronous Lookup

o Customer service owns customer data
o Fulfillment service calls customer service in real time

fulfillment-service

customer-service

@randyshoup



Shared Data
Option 2: Async event + local cache

o Customer service owns customer data
o Customer service sends address-updated event when customer address 

changes
o Fulfillment service caches current customer address

fulfillment-servicecustomer-service

@randyshoup



Joins
Option 1: Join in Client Service

o Get a single customer from customer-service
o Query matching orders for that customer from order-service

Customers

Orders

order-history-page

customer-service order-service

@randyshoup



Joins
Option 2: Service that “Materializes the View”

o Listen to events from item-service, events from order-service
o Maintain denormalized join of items and orders together in local storage

Items Order Feedback

item-feedback-service
item-service

order-feedback-service

@randyshoup



Transactions
• Monolithic database makes transactions across multiple 

entities easy

• Splitting data across services makes transactions 
challenging

BEGIN; INSERT INTO A …; UPDATE B...; COMMIT;

@randyshoup



“In general, application 
developers simply do not 
implement large scalable 
applications assuming 
distributed transactions.”

-- Pat Helland
Life After Distributed Transactions: An Apostate’s Opinion, 2007



“Grownups don’t use 
distributed transactions”

-- Pat Helland



Workflows and Sagas
• Transaction è Saga

o Model the transaction as a state machine of atomic events

• Reimplement as a workflow

• Roll back with compensating operations in reverse

A B C

A B C

@randyshoup



Workflows and Sagas
Many real-world systems work like this
• Payment processing
• Expense approval 
• Software development process

@randyshoup



Intermediate States
Explicitly expose intermediate states in the interface
• Payment started, pending, complete
• Expense submitted, approved, paid
• Feature developed, reviewed, deployed, released

@randyshoup



Amazon Aurora 
• Asynchronous redo log writes

o Sent asynchronously to Aurora storage nodes
o Acknowledged asynchronously to database 

instance
o No distributed consensus round
o Idempotent, immutable, monotonic

• Quorum acknowledgement
o Log progresses forward once quorum of nodes 

acknowledges

• Reestablish consistency on crash 
recovery

@randyshoup Verbitski, et al, 2018, Amazon Aurora: On Avoiding Distributed Consensus, SIGMOD ‘18.

https://dl.acm.org/doi/10.1145/3183713.3196937


Netflix Viewing History
• Store and process member’s playback 

data
o 1M requests per second
o Used for viewing history, personalization, 

recommendations, analytics, etc.

• Original synchronous architecture
o Synchronously write to persistent storage and lookup 

cache
o Availability and data loss from backpressure at high 

load

• Asynchronous rearchitecture
o Write to durable queue
o Async pipeline to enrich, process, store, serve
o Materialize views to serve reads

@randyshoup Sharma Podila, 2021, Microservices to Async Processing Migration at Scale, QConPlus 2021.

https://www.infoq.com/presentations/migration-microservices-scale


Walmart Item Availability
• Is this item available to ship to this customer?

o Customer SLO 99.98% uptime in 300ms

• Complex logic involving many teams and 
domains
o Inventory, reservations, backorders, eligibility, sales caps, etc.

• Original synchronous architecture
o Graph of 23 nested synchronous service calls in hot path
o Any component failure invalidates results
o Service SLOs 99.999% uptime with 50ms marginal latency
o Extremely expensive to build and operate

@randyshoup Scott Havens, 2019, Fabulous Fortunes, Fewer Failures, and Faster Fixes from Functional Fundamentals, DOES 2019.

https://www.youtube.com/watch?v=FskIb9SariI


Walmart Item Availability

@randyshoup Scott Havens, 2019, Fabulous Fortunes, Fewer Failures, and Faster Fixes from Functional Fundamentals, DOES 2019.

https://www.youtube.com/watch?v=FskIb9SariI


Walmart Item Availability
• Invert each service to use async events

o Event-driven “dataflow” 
o Idempotent processing
o Event-sourced immutable log
o Materialized view of data from upstream dependencies

• Asynchronous rearchitecture
o 2 services in synchronous hot path
o Async service SLOs 99.9% uptime with latency in seconds 

or minutes
o More resilient to delays and outages
o Orders of magnitude simpler to build and operate

@randyshoup Scott Havens, 2019, Fabulous Fortunes, Fewer Failures, and Faster Fixes from Functional Fundamentals, DOES 2019.

https://www.youtube.com/watch?v=FskIb9SariI


Walmart Item Availability

@randyshoup Scott Havens, 2019, Fabulous Fortunes, Fewer Failures, and Faster Fixes from Functional Fundamentals, DOES 2019.

https://www.youtube.com/watch?v=FskIb9SariI


Large-Scale Architecture
•Simple Components

•Simple Interactions

•Simple Changes

•Putting It All Together



Thank you!

@randyshoup

linkedin.com/in/randyshoup

medium.com/@randyshoup


