
How Metaflow became a beloved
Data Science framework at Netflix

Julie Amundson
Machine Learning Infrastructure Leader

My first day at Netflix!

2008 2018vs.

Engineer

Valuable

System

2008: Traditional software

Slide courtesy of Ville Tuulos

Valuable

System

Engineer

runs reliably without
human supervision

produces correct
results

2008: Traditional software

Slide courtesy of Ville Tuulos

Me

Valuable

System

2008: I worked on the services behind the “play” button

Slide courtesy of Ville Tuulos

2018: Netflix rapidly expands ML investment

Content
$12B budget

& growing

Studio
100s of concurrent

productions

Product
deliver the best

experience for 220M+
members

Valuable

System

Engineer
Data Scientist

ML Model

Data

2018: ML-powered software

Slide courtesy of Ville Tuulos

Valuable

System

Engineer
Data Scientist

ML Model

Data

✨ New✨

✨ New✨

✨ New✨

2018: ML-powered software

Slide courtesy of Ville Tuulos

Valuable

System

Engineer
Data Scientist

ML Model

Data

✨ New✨

✨ New✨

✨ New✨ produces correct
results

runs reliably without
human supervision

2018: ML-powered software

Slide courtesy of Ville Tuulos

Netflix needed to produce many impactful ML-powered applications

Illustrations courtesy of Ville Tuulos

?

Sonia is building sentiment analysis models for Marketing

Illustrations courtesy of Ville Tuulos

Data
Valuable

system
Model

Rapid prototyping

First, she needs to build a prototype

Model

Valuable

System
Data

Slide courtesy of Ville Tuulos

Rapid prototyping Versioning

Sonia needs to iterate on many ideas to find a prototype that works

Model

Valuable

System
Data

Slide courtesy of Ville Tuulos

Rapid prototyping Versioning

She needs a way to reliably deploy to production

Model

Deployment
Valuable

System
Data

Slide courtesy of Ville Tuulos

Model training and scoring require compute

Illustrations courtesy of Ville Tuulos

Data
Valuable

system
Model

Compute

Sonia’s modeling pipeline needs orchestration!

Illustrations courtesy of Ville Tuulos

Data
Valuable

system
Model

Compute Orchestration

Putting the pieces together
The ML Infrastructure Stack

Slide courtesy of Ville Tuulos

Putting the pieces together
The ML Infrastructure Stack

How much
infrastructure

is needed

How much data
scientist cares

Slide courtesy of Ville Tuulos

Metaflow
A full-stack, human-friendly framework for data science

Slide courtesy of Ville Tuulos

from metaflow import FlowSpec, step, conda_base,\

 kubernetes, schedule

@conda_base(libraries={'scikit-learn': '1.1.2'})

@schedule(daily=True)

class HelloFlow(FlowSpec):

 @step

 def start(self):

 self.x = 1

 self.next(self.end)

 @kubernetes(memory=64000)

 @step

 def end(self):

 self.x += 1

 print("Hello world! The value of x is", self.x)

if __name__ == '__main__':

 HelloFlow() Slide courtesy of Ville Tuulos

start end

from metaflow import FlowSpec, step, conda_base,\

 kubernetes, schedule

@conda_base(libraries={'scikit-learn': '1.1.2'})

@schedule(daily=True)

class HelloFlow(FlowSpec):

 @step

 def start(self):

 self.x = 1

 self.next(self.end)

 @kubernetes(memory=64000)

 @step

 def end(self):

 self.x += 1

 print("Hello world! The value of x is", self.x)

if __name__ == '__main__':

 HelloFlow()

Data

Compute

Orchestration

Versioning

Deployment

Modeling

Slide courtesy of Ville Tuulos

from metaflow import FlowSpec, step, conda_base,\

 kubernetes, schedule

@conda_base(libraries={'scikit-learn': '1.1.2'})

@schedule(daily=True)

class HelloFlow(FlowSpec):

 @step

 def start(self):

 self.x = 1

 self.next(self.end)

 @kubernetes(memory=64000)

 @step

 def end(self):

 self.x += 1

 print("Hello world! The value of x is", self.x)

if __name__ == '__main__':

 HelloFlow()

Data

Compute

Orchestration

Versioning

Deployment

Modeling

Slide courtesy of Ville Tuulos

from metaflow import FlowSpec, step, conda_base,\

 kubernetes, schedule

@conda_base(libraries={'scikit-learn': '1.1.2'})

@schedule(daily=True)

class HelloFlow(FlowSpec):

 @step

 def start(self):

 self.x = 1

 self.next(self.end)

 @kubernetes(memory=64000)

 @step

 def end(self):

 self.x += 1

 print("Hello world! The value of x is", self.x)

if __name__ == '__main__':

 HelloFlow()

Data

Compute

Orchestration

Versioning

Deployment

Modeling

Slide courtesy of Ville Tuulos

from metaflow import FlowSpec, step, conda_base,\

 kubernetes, schedule

@conda_base(libraries={'scikit-learn': '1.1.2'})

@schedule(daily=True)

class HelloFlow(FlowSpec):

 @step

 def start(self):

 self.x = 1

 self.next(self.end)

 @kubernetes(memory=64000)

 @step

 def end(self):

 self.x += 1

 print("Hello world! The value of x is", self.x)

if __name__ == '__main__':

 HelloFlow()

Data

Compute

Orchestration

Versioning

Deployment

Modeling

Slide courtesy of Ville Tuulos

from metaflow import FlowSpec, step, conda_base,\

 kubernetes, schedule

@conda_base(libraries={'scikit-learn': '1.1.2'})

@schedule(daily=True)

class HelloFlow(FlowSpec):

 @step

 def start(self):

 self.x = 1

 self.next(self.end)

 @kubernetes(memory=64000)

 @step

 def end(self):

 self.x += 1

 print("Hello world! The value of x is", self.x)

if __name__ == '__main__':

 HelloFlow()

Data

Compute

Orchestration

Versioning

Deployment

Modeling

Slide courtesy of Ville Tuulos

from metaflow import FlowSpec, step, conda_base,\

 kubernetes, schedule

@conda_base(libraries={'scikit-learn': '1.1.2'})

@schedule(daily=True)

class HelloFlow(FlowSpec):

 @step

 def start(self):

 self.x = 1

 self.next(self.end)

 @kubernetes(memory=64000)

 @step

 def end(self):

 self.x += 1

 print("Hello world! The value of x is", self.x)

if __name__ == '__main__':

 HelloFlow()

Data

Compute

Orchestration

Versioning

Deployment

Modeling

Slide courtesy of Ville Tuulos

The code may look nice
but it doesn’t produce value

by itself

from metaflow import FlowSpec, step, conda_base,\

 kubernetes, schedule

@conda_base(libraries={'scikit-learn': '1.1.2'})

@schedule(daily=True)

class HelloFlow(FlowSpec):

 @step

 def start(self):

 self.x = 1

 self.next(self.end)

 @kubernetes(memory=64000)

 @step

 def end(self):

 self.x += 1

 print("Hello world! The value of x is", self.x)

if __name__ == '__main__':

 HelloFlow() Slide courtesy of Ville Tuulos

Data

Compute

Orchestration

Versioning

Deployment

Modeling

Diagram courtesy of Ville Tuulos

To produce real value, the code needs to integrate seamlessly
with the surrounding infrastructure

Metaflow impact at Netflix

Velocity Volume Variety

Velocity: Time to production

Volume: Metaflow Adoption

My first day

2022: 1000s
of projects

Beyond Variety: Netflix Open Source

multiple cloud
integrations

community
members

1.8k+ 7th
most popular

project

adopted by hundreds
of companies

Want to learn more about Metaflow?

docs.metaflow.org
outerbounds.com

Effective Data Science Infrastructure
New book, by Ville Tuulos

Metaflow’s success began with customer obsession

Illustrations courtesy of Ville Tuulos

Know your customers

Take away their pain

Teach them
to avoid pain

Choose your customers

Customer obsession in action

Know your customers

Take away their pain

Teach them
to avoid pain

Choose your customers

Customer obsession in action

become an expert in
customer needs

Know your customers

Take away their pain

Teach them
to avoid pain

Choose your customers

Customer obsession in action

equip your customers
with superpowers

● Data Scientists
● ML Engineers

Customers

● Algorithm Engineers
● Data Engineers
● Analytics Engineers
● Software Engineers

Non-Customers

Choose your customers

Choosing Data Scientists meant we could concentrate on
their needs

conventional
wisdom

Choosing Data Scientists helped to clarify our product
strategy

Metaflow

Choose your customers

Non-features
● Generic feature store
● Training framework
● Generic Model registry
● …etc…

Choosing Data Scientists enabled us to focus

Features
● Data-parallel training
● Job scheduling
● Reproducibility
● …etc…

Choose your customers

We spoke to many Data Scientists to learn about their
daily lives, in detail

Further reading: https://manuelohan.com/wp-content/uploads/2017/05/The-Mom-Test-en.pdf

Know your customers

Choose your customers

https://manuelohan.com/wp-content/uploads/2017/05/The-Mom-Test-en.pdf

After many conversations,
patterns emerged

Know your customers

Choose your customers

Illustrations courtesy of Ville Tuulos

Metaflow engineers paired with Data Scientists to
experience their pains end-to-end

Know your customers

Choose your customers

Illustrations courtesy of Ville Tuulos

 @step
 def start(self):
 self.n_trees = [16, 32, 64]
 self.next(
 self.train, foreach=’n_trees’
)

 @step
 def train(self):
 n_trees = int(self.input)

model, rmse = train_model(n_trees)
self.rmse = rmse
self.model = model

 self.next(self.join)

 @step
 def join(self, inputs):
 self.best_rmse = min(
 i.rmse for i in inputs
)
 self.next(self.end)

Trai
n

Know your customers

Take away their pain

Choose your customers

The resulting features met Data
Scientists where they were

 @step
 def start(self):
 self.n_trees = [16, 32, 64]
 self.next(
 self.train, foreach=’n_trees’
)

 @step
 @kubernetes(memory=64000)
 def train(self):
 n_trees = int(self.input)

model, rmse = train_model(n_trees)
self.rmse = rmse
self.model = model

 self.next(self.join)

 @step
 def join(self, inputs):
 self.best_rmse = min(
 i.rmse for i in inputs
)
 self.next(self.end)

Trai
nTrai
nTrai
nTrai
n

Know your customers

Take away their pain

Choose your customers

Data Scientists could ask for
compute resources any time
they needed!

 @step
 def start(self):
 self.n_trees = [16, 32, 64]
 self.next(
 self.train, foreach=’n_trees’
)

 @step
 @kubernetes(memory=64000)
 def train(self):
 n_trees = int(self.input)

model, rmse = train_model(n_trees)
self.rmse = rmse
self.model = model

 self.next(self.join)

 @step
 def join(self, inputs):
 self.best_rmse = min(
 i.rmse for i in inputs
)
 self.next(self.end)

Know your customers

Take away their pain

Choose your customers

…Without introducing new
pain

Data Scientists told their colleagues about the work
they accomplished while using Metaflow

Know your customers

Take away their pain

Teach them
to avoid

pain

Choose your customersTrai
nTrai
nTrai
nTrai
n

Illustrations courtesy of Ville Tuulos

Metaflow engineers only marketed features that we
could support forever!

Know your customers

Take away their pain

Teach them
to avoid

pain

Choose your customers

Trai
nTrai
nTrai
nTrai
n

Illustrations courtesy of Ville Tuulos

The Metaflow team provided fanatical customer
support

Further reading: Rackspace on Fanatical Customer Service

Know your customers

Take away their pain

Teach them
to avoid

pain

Choose your customers

https://www.forbes.com/sites/micahsolomon/2015/02/18/the-rackspace-method-fanatical-customer-service-and-customer-support-in-the-b2b-cloud/?sh=4cc5889a36b6

Metaflow engineers treated education as part of of
the product

Know your customers

Take away their pain

Teach them
to avoid

pain

Choose your customers

Documentation Tutorials Classes

Illustrations courtesy of Ville Tuulos

Want to learn more about Metaflow?

docs.metaflow.org
outerbounds.com

Effective Data Science Infrastructure
New book, by Ville Tuulos

Big thanks to Ville, who
let me use many of his
slides and illustrations
in this deck!

I’m looking for my next adventure!

Find me after the talk, or visit my LinkedIn:

linkedin.com/in/julieamundson

https://www.linkedin.com/in/julieamundson/

Questions?

