The joy of building large
scale systems

Suhail Patel | @suhailpatel | https://suhailpatel.com

YOW! 2023

https://suhailpatel.com

ChatGPT Prompt: Generate an image of a group of diverse software engineers
being afraid of the on-call pager going off

@suhailpatel | YOW! 2023

Wait, but why?

Many of the systems (apps, services, databases, caches, queues
etc.) that we build/rely on are grounded on quite poor assumptions

for the hardware of today

3 @suhailpatel | YOW! 2023

THE .CLUB CLUB

Choose Boring Technology

This is the spoken word version of my essay, Choose Boring Technology. | have largely come to terms with it and the reality that | will never escape its popularity.

| gave this most recently at the WikiMedia Foundation’s developer conference, where Scott Ananian called it “how to be old, for young people.”

Here are my other talks, my website, and some Medium posts.

IEEEP BT 154

¥ Follow @mcfunley

Choose Boring Technology

Wikimedia Dev Summit ® January 2018

Hey #

Suhail Patel
Senior Staff Engineer at Monzo
@suhailpatel

@suhailpatel | YOW! 2023

monzo Personal Business Accounts Savings Investments Borrowing Features Help Sign up

Banking
made easy

. 1 acmoney | card
Spend, save and manage your money, all in one place.
Open a full UK bank account from your phone, for free. Activity

2 upcoming
payments

Open a Monzo account

a8 Salary payment

e Transport for London 5.80

UK residents only. Ts&Cs apply.
185.00

" Best
B banking app

awaras

winner 2023

e £O90./0

nnnnnnnnnnnn

uuuuuuuuuuuu

xxxxxxxxxxxx

»‘ Ledger Service

Account Service

HHHHHHHHHHHHH

master

Monzo Card

@
-@®

7 @suhailpatel | YOW! 2023

Latency numbers

L1 Cache Reference
L2 Cache Reference
Main Memory Reference
Send 1K bytes over 1 Gbps network
Read 4K bytes from SSD
Read 1MB sequentially from memory
Read 1MB from SSD

Disk Seek

0.5ns
/ns
100ns
10,000ns
150,000ns
250,000ns
1,000,000ns

10,000,000ns

Source: https://gist.github.com/jboner/2841832

8

@suhailpatel | YOW! 2023

Latency numbers

L1 Cache Reference
L2 Cache Reference
Main Memory Reference
Send 1K bytes over 1 Gbps network
Read 4K bytes from SSD
Read 1MB sequentially from memory
Read 1MB from SSD

Disk Seek

Source: https://gist.github.com/jboner/2841832

0.5ns
/ns
100ns
10,000ns
150,000ns
250,000ns
1,000,000ns

10,000,000ns

9

0.9 days
75 days

100 days

27 years

411 years

689 years
2.7 willennivms

27 willennivms

@suhailpatel | YOW! 2023

B-Trees are used in many index implementations

PostgreSQL

@suhailpatel | YOW! 2023

B-Tree

11 @suhailpatel | YOW! 2023

Searching within a B-Tree

” .\
3 F FR ~

01 100

12 @suhailpatel | YOW! 2023

I S ==

= Computer Management

- =X
Q File Action View ‘Window Help

¢ -+ @[2 E

Q Computer Management (Local)

= ﬂ System Tools
=

Local Users and Groups
Performance Logs and Alert:
Device Manager

¥ g Shared Folders

Srvices and Applications

3
G

Yolume Session Status File System Capacity Free Space % Free Space

Defragmenting... 11,99 GB

< | i

Estimated disk usage before defragmentation:

Estimated disk usage after defragmentation:

[

Defragmen Pause Stop View Repor!

B Fragmented files MM Contiguous files [Unmovable files [] Free space

(C:) Defragmenting... 1% Compacting Files

_7," start 'ﬁ Administrative Tools) Computer Management

14 @suhailpatel | YOW! 2023

Random & Sequential I/O

L
8
s
= : . S
L Comparing Random and Sequential Access in Disk and Memory
Random, disk 316 values/sec
Sequential, disk 53.2M values/sec
Random, SSD 1924 values/sec
Sequential, SSD 42 2M values/sec
Rand om, memory 36.7M values/sec
Sequential, memory 358.2M values/sec
- | - 1 =k - I L =
10 100 1000 10t 10° 10° 107 10°

Note; Disk tests were carried out on a freshly booted machine [a Windows 2003 server with 64-GB RAM and

eight 15 000-RPM SAS disks in RAIDS configuration) to eliminate the effect of operating-system disk caching.
SSD testused a latest-generation Intel high-performance SATA SSD,

Source: The Pathologies of Big Data by Adam Jacobs (2009)
https://queue.acm.org/detail.cfm?id=1563874

15 @suhailpatel | YOW! 2023

Disks are really fast nowadays!

oo I -
sso [o

NVMe I 0.02ms

Disk Seek Latency

16 @suhailpatel | YOW! 2023

Disks are really fast nowadays!

HDD . 200mbps
N

Disk Throughput

17 @suhailpatel | YOW! 2023

Faster hardware = More throughput

NewOrder Transactions per Minute - 100
Connections

200000

150000 ~—~—

100000 | vme
e SAS
s S 1A

O “TTTTTTITTT T T T T T T rrrrrrrrrTTT FT VT T T T I T T I I T ITTICTITTITTITITITTITTITTITIITIITTIIIIINIIIIIIN
e G 5-hdd

© O O O O O O O O O O O O O O
O < &N O 0 O < N OO0 O < &N O O
1N O 1N O < O A M 0 M 0 M IS
T =" AN AN NN O O

Time interval

Source: https://download.semiconductor.samsung.com/
resources/white-paper/best-practices-for-mysql-with-ssds.pdf

18 @suhailpatel | YOW! 2023

=Wl RESEARCH ARTICLE |

Improving 1/0 Performance via Address
Remapping in NVMe Interface

DONG KYU SUNG !, YONGSEOK SON "2, HYEONSANG EOM!, AND SUNGGON KIM 3

I Department of Computer Science and Engineering, Seoul National University, Seoul 08826, South Korea
2Department of Computer Science and Engineering, Chung-Ang University, Seoul 06974, South Korea
3Department of Computer Science and Engineering, Seoul National University of Science and Technology, Seoul 01811, South Korea

Corresponding author: Sunggon Kim (sunggonkim @seoultech.ac.kr)

This work was supported in part by the National Research Foundation of Korea (NRF) through the Korean Government under Grant
RS-2022-00166541, Grant NRF-2021R1C1C1010861, Grant NRF-2022R1A4A5034130, and Grant 2021R1F1A1106343812; and in part
by the BK21 FOUR Intelligence Computing (Department of Computer Science and Engineering, SNU) funded by NRF under Grant
4199990214639.

ABSTRACT Recently, flash-based solid-state drives (SSDs) are widely used in industry and academia due to
their higher bandwidth and lower latency compared with traditional hard disk drives (HDDs). Furthermore,
SSDs with the Non-Volatile Memory Express (NVMe) interface can provide higher performance and ultra-
low latency compared with the Serial AT Attachment (SATA) SSDs. Due to their high performance, NVMe
SSDs are adopted in many systems as fast storage devices. However, the performance of NVMe SSDs can
be negatively affected by I/O access patterns. For example, random write access patterns can have negative
impacts on performance due to the unique characteristics of SSDs such as out-of-place update and garbage
collection. In this paper, we propose an address remapping scheme to improve the I/0O performance of NVMe
SSDs. Our proposed scheme transforms random access patterns into sequential access patterns in the NVMe
device driver. This allows our scheme to improve the I/O performance of NVMe SSDs while supporting
widely used file systems such as EXT4, XFS, BTRFS, and F2FS without any modification to the device.
Experimental results show that our proposed scheme can improve the performance of NVMe SSD by up to
64.1% compared with the existing scheme.

INDEX TERMS Flash-based SSDs, NVMe interface, device driver, I/O performance, garbage collection.

Source: Improving I/O Performance via Address Remapping in NVMe Interface
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9947049

19 @suhailpatel | YOW! 2023

CPUs are getting faster

Single thread performance of x86 CPUs over time

Ryzen 7 5800X
3500 - 0

Core i7-107.00K

30007 Core i7-9700K
Core 17-7700K
o © Ryzen°7 3800X
Core i7-6700K Core 17-8700K

o 2500 - Core i7.'4790K° Ryzen 7 2700X
S Core i7-5775C ¢
N Core i7-4770K “
= Core i7.-377OKo Ryzen.7 1700X
= 2000 A Core i7-2600K
> o
(a1
O
Al10-9700
Core i17-970 FX-8300 Al10-7850K ®
1500 ~ Core i7-870® o =
[
Core2 .Duo E8400e Phenom Il X4 955
Core2 Duo E6700 e Athlon Il X2 250
1000 ® Athlon.64 X2 5800+ e FX-8100

Athlon 64).(2 5000+e Phenom 9600

Pentium 4
n

®e Athlon 64 3100+

500

| 1 1 1 1 1 1 | 1 1 1 1 1 1
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
Year

Source: Evolution of Single-threaded x86 CPU Performance
https://mlech26l.github.io/pages/2020/12/17/cpus.html

20 @suhailpatel | YOW! 2023

CPUs are getting faster

c1.xlarge 256 KB

c3.xlarge 512 KB

céi.xlarge 1024 KB

L1 Cache

12 MB

c1.xlarge

c3.xlarge 25 MB

céi.xlarge 40 VIB

L2 Cache

21 @suhailpatel | YOW! 2023

CPUs are

evolving

w)
"
y ‘-'
1 us B3
bevt _
1]

ert

. '1 ::i‘ ms

3
b

H
-
iE
b

a !

BE PO DO PBe i e
L
LB __B__B__N__

L

0 AR MM am
o 15 P92 0% B e

R 5N 0N v e

ar

L1
nu "my B 2

14

L]

L=
L=

”
—mmm-
Mou won pow pn -
sor por por gox goe B BE
$ox n BSw MOn B -
Bou now B0w b0e g pix B -

is

Jarm

22

@suhailpatel | YOW! 2023

0 0 . . L
. . L] L] . .
[
[o : - V
L 4
. ° . < o L L
|
D) 'S Ly . ’ L 3
& e S
~ e e ——
- C i edadse
.. ..bbbt “1ﬁ- o .v -
ﬁsumu, s 5
s Agreasagdee !
" S ll 1 ‘P9
l.l.Vllltwl.t, NN ' b
S T Yy 18 O
ST LSO SIS JHit I¥SN

e
P
Ao

4

lct::ﬁ

RN

llll

a¥e"n
e
"
o0’
e"ATA "
20
.‘
[]
.-

rl
’O
o

.
-
-,
-
.
%~
<
.
1,"
.

L
S O R 0 S Wt L
%untlfl,,,,,,,,,-.,.,.,.,,

N T

. Dt I Y . . . q
. \-' ﬂ
T ,..ﬁbwas ..-: a3 YA ;:w N N

.l:o:nz:ﬁ/il:ﬁd}ll—li.:l AR ST IR Faras NN
ORISR PR St i IS £ NS 4/1:11.’11 e N R i 2

SNSRI e Pebeboteeebbleablnblh b

e U £ 3 { Y y

A b*n.lz;.un/:llr-lllli:l R N N S vy o .

n - ,u.l;l.DLI:lbbllikblllu’lltllllllllfl;:c;l:/r;:z..o:: .8 ‘.s':‘ f
. S .;b;:/:.:l ~ \\

‘.rlclllr-|‘hllw|l
,.,.,_.,,«n..,,,%..,n-q
0\0 1@&- ,\Qo
1 3 . ;n
,. w
w

t,,,,,,,,,,,,..,,,,,.,,,., x

VRIS TN S N VN VNN NS N ONONEN A N STy N NN s - Woose.

~ T T T T - ."..‘,‘

Y ~ ”lllll:lt:ll:l: %. .7’5-‘”
i

I'.JAI:,‘IIIIIIIJ:Iﬂ% ~w o~ .*1

D N Sty ~ f%e \
SN N lllll:/ll:‘fﬁr:ﬁ s ~
J.’l.h&n}f::l:/llll. ,Ql‘/. 0“,

\W.Islllllfla:llﬁ: l.z;:(d;:,r

=0
%
g

v

)

i e

UnN $
l.%.‘... Illlllllll dﬁla:-. l:;—.. y . -
Ny ll/;/l::;:* :.4.&’:’ ’a‘./ WA £ W,
.lll/::tll:.lmo.4-0:114.)1..p;ﬂﬂ.:. o ’
W n X s
¢

[s \
‘.l...lrl//ltllpal ¢ L/ W;'..ﬁ
l‘ llllllll///l)l:;d::ll:ia

)
hofrflirzlllz;al..l, 4...1.';.m
\klllh ll/llllllll'-oll\\l". : : ..6 \J
> % . . .

<
-~
.
L
\!
-
’
.

."-.'
-
g
&\~
-
=
-
-
[]

.~

v
)
L

-

-
s,
o>
°
i
]
o o
-

NaATmMNS LN s N N v s s s s v s g A Q
Illhul?ﬂ:/lll::l:tl:llv:f:1;1‘11
”"’ll’lllllllll/lllll4!.ll
IIIIJ\“ llllllllllllll:lllttfoﬂ,.

h.lll lll:l:al::l:;,l. SN A S N s ~ -
,Illlllﬂlllllllllll ~1114:: o DR
4

..-.

- W

Tassd

‘\ 4
bl
-~
-
3

-
»
-~
-~
. - -
‘\
N\
)
.-
‘.

-,
.‘,
@

. S R - # N e e e T Y SARASYS s

SN NN NN N N watN N N W ~ N S N N l\ .‘,.. .\

SIS S R o *k ’ "lllllllllll/ll:/L‘-N“Ll“‘% G'-.‘.‘V‘\.A:.;.
=

N T S N N 0 % v 7. NN NN mt‘\‘llllllx‘\4111111«4
RS

-,
\
- .-.:.

-,
P
ALe.w, "

.:-:///llllllllld I 2 («01«‘1‘1‘«1 l;:ltilt’l‘t;af/,:. ~ \‘\
SN NS NN N N NN i ey e doJll PPN llﬂ’”.‘%*" A’.“\% 14::4:;,,\\\.A‘ }

e s as s s s sa N ASRSASRE Y YN YN S Nl N *‘.“t ‘l‘ql(ll. PN t.)lt)b»(ll\..l!d
R R lllllllllll“:'.v:utlll .11'1‘:1‘4.1.4,41'::,1.,;, - <
= ',ll/:llllllllll.rlllllllllllllllc:ulltl:lll:\\ NN T Ty < .S

‘c.‘;g

.

R4

5 4,44;,.4.4.
JJJJJIJJJa.‘.J
YU LY Y Y XYY
44 Y /Jledde.J

e

-
=
T o%

444444....4....,] L 4 , : ' a \ . '
Y ;) . \ . P Or. . OR - “.grs 3. --
i SR . 4 ey ae” ==

Y e) ._‘;..J\.y....

PR S _n- .. PP WAT

S 10 T 1 T 1 T T o £ T T 1 B TR I 1
J.f fddal... 4...4L....u..._u_..
44,.4__ .a...@.....r. WON 0 YUY

1 1 » Ul % I) N A [N L v‘ "
3 . wam.. ‘.L.OC..sm.t y ' VA B
: 3 =) Y p I INT E ol |
) NPy
Y s

LAWY TN 4ty

TN 3
3 - J

-

-

-

o

P S T
- —— -

e
-

-

-

-

=

-

-

-

-

-

-
Q—_-'

A,.,<‘J444d i
S 4 (RS RNEY :_..._.._

MEERURRRE N)

1 1Y) WYY .M: d:dfa::,:. 1YY v ap e Y [U

) L)) LIS 10 11 0 1 T R T A LR W I A

LRI B T 1 TR LS N 81 IR 1000 0L 0 T U T R I N T T T T [

IR RRREET VR I T DD IR0 A D D 0]

_.__._o..,.,.f...d.:d.ad,.a_.d NRIRIEY YRR TN EY

L....___Q.vJL1..&_....,......._..........u. R

L) Y @n D LI I N I % T R e T wl 1Y N Y

W_...a.i...lbti.._b...:._:d._...fadua..,:....:.....;.L..._.__‘{._.
BRLMRLAREBRERERESRL SRR RBRE! 5...L..s.«.....:..I.L..........:.:......,...._.._. 0‘.4 AT TN
1 YR RN B L T T T Y Y IR T _..."I.‘.,..,

\ 1] ...___d....,.-,....a.,a.,..,..-.a........_........,...............N._.....‘_._" TR
: 00 A 10 Dh i T bk e o (T T b B 1 I 0y T et o i

coaramy,
g
£

:»f..la‘, » !, » s N Y » ' .,‘ , A e . ‘. o. -

-. W’. - e LY ' e Wy) A
- » 3 a e ' \ LR
" ‘ \ 5
0“0 WEN APy .
e N B
e P ,.c) _.. Tt 4‘ - - 0
0’ wld T A g
ST IA L Yea® : :
: . .o, o WIS Y LW Atk R) S :
o)y K e ~ URICTR R AT POSE L T 4.\\. e &7\ vy .
’ P Ao LYY S\ 00" 26 L® V| R
' i N WP @Rt Nmes 97 " N
V \ = (L) .
an®) ' e
b J 0 -
) \
\ i [_Il.r L K4 I‘ -’ (|
] i , | —w_ Ve o’ e 5
1 ' ' i) P b1 03 LB 1) ' ’((‘4‘.’.] (]
-4 AR . .illlll’l]lllll!&J)’ll\\’ o8 0
w’zd Cxl * A T L | Ve " 1SS A0 VAR I PN N coae® @ L "
: Tl | L) 1S) VRS NP s NS ™9 _. [3 "4 A)
e) T T T L L B TR o BT e R [DTS . Pr I I
]) DD 1A DD K i) 1 Ssam
‘) y)l ' ' 1 oe) A | " > 5
) .
! ! " " ' My b
| . . W ' 10 o ale W X 110 . ¢
n 2 B DIk T] ”) ‘s ; !
2 ! % B) 3. .c(lll‘."((g wSwa s L8 N A0 b FARE L . «
. - @ ‘- . '® . l.btll: e Tes . W ~el W 8 @ e L C »
’ ' ! L | L T T ey yeee . | ST >4 ..
) { e L NGin N
| 1, Sow. |- SN .
[[I'G NNSE . S
) o N DN LS o/ 3 A - .
' \ \ % A LU T AN N
A} \ A 1 \ \ LY N\
\ e N \ \ \
LY AT . \ \ YA (T §
N AT b \ A\ REHY
N \ N \ A A \ \
N\ 5 ‘. \ L \ Vs
\ . (O ')
. . . ' [y :
\ \ \ V)
\ \ \)

9 9 9 9 0 0 0 0ge ‘0P OCe

DI B B e

Networks are getting faster

Max number of Max total Default egress Tier_1 egress
, « Memory , , , Local , _

Machine types vCPUs (GB) persistent disks PD size sSSD bandwidth bandwidth

(PDs)? (TB) (Gbps)* (Gbps)*
c2-standard-4 4 16 128 257 Yes 10 N/A
c2-standard-8 8 32 128 257 Yes 16 N/A
c2-standard-16 16 64 128 257 Yes 32 N/A
c2-standard-30 30 120 128 257 Yes 32 50
c2-standard-66 60 240 128 257 Yes 32 100

24 @suhailpatel | YOW! 2023

e

o -
S
NN
P s SRS
. ~

Jias)

it e

g
3
~3
:
N
1
!
3 i
-1

il

Y

Latency numbers

L1 Cache Reference 0.5ns } Much larger caches weans
L2 Cache Reference 7 we would hit these caches more often
Main Memory Reference 100ns 3-4x higher throughput
Send 1K bytes over 1 Gbps network 10,000ns Much larger NICs
Read 4K bytes from SSD 150,000ns Much faster NVMe drives
Read 1MB sequentially from memory 250,000ns 20,000ns with PIRY
Read 1MB from SSD 1,000,000ns 100,000ns with NVMe
Disk Seek 10,000,000ns 20,000ns with NVMe

Source: https://gist.github.com/jboner/2841832

26 @suhailpatel | YOW! 2023

The Free Lunch Is Over
A Fundamental Turn Toward Concurrency in Software

By Herb Sutter
The biggest sea change in software development since the OO revolution is knocking at the door, and its name is Concurrency.

This article appeared in Dr. Dobb’s Journal, 30(3), March 2005. A much briefer version under the title "The Concurrency Revolution” appeared in
C/C++ Users Journal, 23(2), February 2005.

Update note: The CPU trends graph last updated August 2009 to include current data and show the trend continues as predicted. The rest
of this article including all text is still original as first posted here in December 2004.

Your free lunch will soon be over. What can you do about it? What are you doing about it?

The major processor manufacturers and architectures, from Intel and AMD to Sparc and PowerPC, have run out of room with most of their traditional
approaches to boosting CPU performance. Instead of driving clock speeds and straight-line instruction throughput ever higher, they are instead
turning en masse to hyperthreading and multicore architectures. Both of these features are already available on chips today; in particular, multicore is
available on current PowerPC and Sparc |V processors, and is coming in 2005 from Intel and AMD. Indeed, the big theme of the 2004 In-Stat/MDR
Fall Processor Forum was multicore devices, as many companies showed new or updated multicore processors. Looking back, it's not much of a
stretch to call 2004 the year of multicore.

And that puts us at a fundamental turning point in software development, at least for the next few years and for applications targeting general-
purpose desktop computers and low-end servers (which happens to account for the vast bulk of the dollar value of software sold today). In this
article, I'll describe the changing face of hardware, why it suddenly does matter to software, and how specifically the concurrency revolution matters
to you and is going to change the way you will likely be writing software in the future.

Arguably, the free lunch has already been over for a year or two, only we’re just now noticing.

The Free Performance Lunch

There’s an interesting phenomenon that's known as “Andy giveth, and Bill taketh away.” No matter how fast processors get, software consistently
finds new ways to eat up the extra speed. Make a CPU ten times as fast, and software will usually find ten times as much to do (or, in some cases,
will feel at liberty to do it ten times less efficiently). Most classes of applications have enjoyed free and regular performance gains for several

Free lunch?

“No matter how fast processors get, software consistently finds new ways to
eat up the extra speed. Make a CPU ten times as fast, and software will usually
find ten times as much to do (or, in some cases, will feel at liberty to do it ten

times less efficiently)”

Herb Sutter
http://www.gotw.ca/publications/concurrency-ddj.htm

28 @suhailpatel | YOW! 2023

Free lunch?

"Efficiency and performance optimization will get more, not less, important”

Herb Sutter
http://www.gotw.ca/publications/concurrency-ddj.htm

29 @suhailpatel | YOW! 2023

TWh

225

200

175

Hyperscale

150

125

100

75

50

25

[EA. Licence: CC BY 4.0

© Traditional ® Cloud (non-hyperscale) « Hyperscale

https://www.iea.org/data-and-statistics/charts/global-data-
centre-energy-demand-by-data-centre-type-2010-2022

30 @suhailpatel | YOW! 2023

Four principles for writing energy and carbon-efficient software Subscribe Article Options v

ﬁ Jennifer_Huffstetler B 04-20-2023 72 OO0 @ 2748
Employee | |

Intel is known for its industry leading hardware solutions and for decades we have been a strong environmental
steward. This stewardship has included efforts to accelerate sustainability through increasingly efficient
products to developing innovative energy conserving features for our processors and platforms. With this work,
Intel is leading the enablement of a more sustainable data center and compute industry. With global data
center energy consumption accounting for 0.9-1.3% of total global energy demand (IEA, Sept 2022), that's a
great thing.

But global and substantial impact is best achieved by looking at all areas in compute that can provide
sustainability value. According to Intel estimates, infrastructure and software inefficiency count for over 50% of

greenhouse gas (GHG) emissions in the data center. This illuminates that it's not only what's in your data center
that matters, but how you use it. For example, infrastructure inefficiency can be addressed through greater
server utilization.

For this blog, though, | will focus on software inefficiency as there are ways to make your software more carbon
and energy efficient without compromising its functionality or performance. In fact, making your software more
energy and carbon efficient is likely the fastest way to improve the environmental impact of your IT operations.
Here are four principles that can guide you in designing and developing software that minimizes its energy
consumption and carbon footprint.

https://community.intel.com/t5/Blogs/Thought-Leadership/Big-ldeas/
Four-principles-for-writing-energy-and-carbon-efficient-software

31 @suhailpatel | YOW! 2023

32

@suhailpatel | YOW! 2023

Thread per core

cpu

Data main memory

Shared Everything Architecture

33 @suhailpatel | YOW! 2023

Thread per core

EEEE
| | | |

Shared Nothing Architecture

34 @suhailpatel | YOW! 2023

Thread per core

Network

Handler

|
EEEE
| | |

Shared Nothing Architecture

Source: The Impact of Thread-Per-Core Architecture on Application Tail Latency
https://helda.helsinki.fi//bitstream/handle/10138/313642/tpc_ancs19.pdf

35 @suhailpatel | YOW! 2023

-

ﬂ':- . B £ "’ \d
- . i & 3 -
— - 4 157 § r - g 4
SEASTAR - ¥
. . g . - * 1
B —— o g p . ¥ - -

- -

. . e SR o o - '
-
Architecture » _ Seastar Applications 2 Frequently Asked Questions ScyllaDB

Seastar is an advanced, open-source C++ framework for high-performance

server applications on modern hardware. Seastar is used in Scylla, a high-

performance NoSQL database compatible with Apache Cassandra. Applications

using Seastar can run on Linux or OSv.

ooooooooooooooooooooooooo

Seastar is the first framework to bring together a set of
extreme architectural innovations, including:

Shared-nothing design: Seastar uses a shared-nothing Futures and promises: An advanced new model for

oo

model that shards all requests onto individual cores. concurrent applications that offers C++ programmers
both high performance and the ability to create

High-performance networking: Seastar offers a choice of comprehensible, testable high-quality code.

ooo

network stack, including conventional Linux networking

for ease of development, DPDK for fast user-space Message passing: A design for sharing information
networking on Linux, and native networking on OSv. between CPU cores without time-consuming locking
https://seastar.io

36 @suhailpatel | YOW! 2023

10_uring

Completion

Queue

Shared Memory

Source: https://developers.redhat.com/articles/2023/04/12/why-you-
should-use-iouring-network-io

37 @suhailpatel | YOW! 2023

https://developers.redhat.com/articles/2023/04/12/why-you-should-use-iouring-network-io
https://developers.redhat.com/articles/2023/04/12/why-you-should-use-iouring-network-io

Flexible 10 Tester v3.18 ESI
Engine Comparison (Type: Random Write - - Bulfered: No - Direct: No - Block Size: 4KB - Disk Target: Default Test Directory) p I'

’ 10PS, More 1s Better Phoronix Test Suste 9.6.0m0

10 uring
SE +/- 665207, N=4

468500

Linux AIO
SE +/- 3001273 N=15

362200

100000 200000 300000 400000 500000

1. (CC) gcc options: ~rdynamic -std=gnu99 -ffast-math -include 03 -U_FORTIFY_SOURCE -march=native -irt -la0 -1z -ipthread
«Im -IdI

Flexible 10 Tester v3.18 ESI
Engine Comparison (Type: Random Read - - Bufered: Yes - Direct: No - Block Size: 4XB - Disk Target: Default Test Directory) p Il

P 1095, More s Better Phoronix Test Suite 9.6.0m0

10 uring

SE +/- 264875 N =15

Linux AIO
SE+/-5774.N=3

15300

60000 120000 180000 240000 300000

1. (CC) gcc options: ~-rdynamic -std=gnus9 -ffast-math -include -03 -U_FORTIFY_SOURCE -march=native -irt -l -1z -ipthread
«Im -IdI

https://www.phoronix.com/news/Linux-5.6-10-uring-Tests

38

@suhailpatel | YOW! 2023

0 Product ¥ Solutions ¥ Open Source ¥ Pricing Signin

B libuv/libuv « pubiic [\ Notifications % Fork 3.4k ¢ Star 21.5k v

<> Code (-) Issues 106 i9 Pull requests 47 () Discussions (») Actions () Security |~ Insights

linux: introduce io_uring support #3952 | Newissue

)e Y i<l bnoordhuis merged 1 commit into libuv:vl.x from bnoordhuis:iou @ on Apr 18

L)) Conversation 52 -0- Commits 1 [} Checks 36 Files changed 7 +662 -35 HEEN
bnoordhuis commented on Apr 12 - edited ~ Member Reviewers
))) . L@ trevnorris v
Add io_uring support for several asynchronous file operations: -
“‘é/‘ﬁ santigimeno v
e read, write
clason D
e fsync, fdatasync
e stat, fstat, Istat @ espoal =
io_uring is used when the kernel is new enough, otherwise libuv simply :
Assignees

falls back to the thread pool.
No one assigned

Performance looks great; an 8x increase in throughput has been observed.

Labels
This work was sponsored by ISC, the Internet Systems Consortium.
None yet
& 55 (@ 75 | # 54
Projects
. : None yet
E+ bnoordhuis force-pushed the iou branch from 8dd8b3e to efc9bbf last month Compare
Milestone
2 bnoordhuis mentioned this pull request on Apr 12 No milestone
Use io_uring for read/write/fsync on Linux #2322 11 Closed
E‘, 7 tasks Development

https://github.com/libuv/libuv/pull/3952

39 @suhailpatel | YOW! 2023

Systems programming languages

ZIG
Programming
Language

@suhailpatel | YOW! 2023

New tricks

src/lib.rs

use pyo3::prelude::*;

/// Formats the sum of two numbers as string.

#[pyfunction]

fn sum_as_string(a: usize, b: usize) -> PyResult<String> {
Ok((a + b).to_string())

}

/// A Python module implemented in Rust. The name of this function must match

/// the “lib.name’ setting in the "Cargo.toml’, else Python will not be able to

/// import the module.

#[pymodule]

fn string_sum(_py: Python<'_>, m: &PyModule) -> PyResult<()> {
m.add_function(wrap_pyfunction! (sum_as_string, m)?)?;

Ok(())

Finally, run maturin develop . This will build the package and install it into the Python virtualenv
previously created and activated. The package is then ready to be used from python:

$ maturin develop

lots of progress output as maturin runs the compilation...
$ python

>>> import string_sum

>>> string_sum.sum_as_string(5, 20)

|25|

https://pyo3.rs/v0.18.3/
41 @suhailpatel | YOW! 2023

Table 4. Normalized global results for Energy, Time, and

Memory
Total
Energy Time Mb
(c) C 1.00 (c) C 1.00 (c) Pascal 1.00
(c) Rust 1.03 (c) Rust 1.04 (c) Go 1.05
(©) C++ 1.34 (¢) C++ 1.56 (© C 1.17
(c) Ada 1.70 (c) Ada 1.85 (c) Fortran 1.24
(v) Java 1.98 (v) Java 1.89 (c) C++ 1.34
(c) Pascal 2.14 (c) Chapel 2.14 (c) Ada 1.47
(c) Chapel 2.18 (c) Go 2.83 (c) Rust 1.54
(v) Lisp 2.27 (c) Pascal 3.02 (v) Lisp 1.92
(c) Ocaml 2.40 (c) Ocaml 3.09 (c) Haskell 2.45
(c) Fortran 2.52 (v) C# 3.14 (i) PHP 2.57
(c) Swift 2.79 (v) Lisp 3.40 (c) Swift 2.71
(c) Haskell 3.10 (c) Haskell 3.55 (i) Python 2.80
(v) C# 3.14 (c) Swift 4.20 (c) Ocaml 2.82
(c) Go 3.23 (c) Fortran 4.20 (v) C# 2.85
(i) Dart 3.83 (v) F# 6.30 (i) Hack 3.34
(v) F# 4.13 (i) JavaScript 6.52 (v) Racket 3.52
(i) JavaScript 4.45 (i) Dart 6.67 (i) Ruby 3.97
(v) Racket 7.91 (v) Racket 11.27 (c) Chapel 4.00
(i) TypeScript 21.50 (i) Hack 26.99 (v) F# 4.25
(i) Hack 24.02 (i) PHP 27.64 (i) JavaScript 4.59
(i) PHP 29.30 (v) Erlang 36.71 (i) TypeScript 4.69
(v) Erlang 42.23 (i) Jruby 43.44 (v) Java 6.01
(i) Lua 45.98 (i) TypeScript | 46.20 (i) Perl 6.62
(i) Jruby 46.54 (i) Ruby 59.34 (i) Lua 6.72
(i) Ruby 69.91 (i) Perl 65.79 (v) Erlang 7.20
(i) Python 75.88 (i) Python 71.90 (i) Dart 8.64
(i) Perl 79.58 (i) Lua 82.91 (i) Jruby 19.84

Source: Energy Efficiency across Programming Languages
https://greenlab.di.uminho.pt/wp-content/uploads/2017/10/sleFinal.pdf

42 @suhailpatel | YOW! 2023

Date Parsing in Python

python3

import datetime
datetime.datetime.fromisoformat('2023-06-15T09:00:00-05:00")
datetime.datetime(2023, 6, 15, 9, 0, tzinfo=datetime.timezone(datetime.timedelta(seconds=-18000)))

43 @suhailpatel | YOW! 2023

Date Parsing in Python with Rust!

pip install maturin

maturin new riso38601
v % Which kind of bindings to use?
11 Documentation: https://maturin.rs/bindings.html - pyo3
-~ Done! New project created riso8601

cd riso8601
s
Cargo. Lock Cargo.toml pyproject.toml src target

44 @suhailpatel | YOW! 2023

Date Parsing in Python with Rust!

src/lib.rs

[pyfunction]
fn parse_datetime<'p>(py: Python<'p>, input: &str) — PyResult<&'p PyDateTime> {
// Our implementation goes here ...

¥

[pymodule]
fn riso8601(_py: Python, m: &PyModule) — PyResult<()> {
m.add_wrapped(wrap_pyfunction!(parse_datetime))?;

ok(C())

45 @suhailpatel | YOW! 2023

Date Parsing in Python with Rust!

Hour Second

\ Minute
2023-06—-15T09:00:00-05:00
t 4 4 t
Year Day Timezone

Month

datetime.datetime(2023, 6, 15, 9, 0, tzinfo=
datetime.timezone(datetime.timedelta(days=-1, seconds=681400)))

46 @suhailpatel | YOW! 2023

src/lib.rs

[pyfunction]
fn parse_datetime<'p>(py: Python<'p>, input: &str) — PyResult<&'p PyDateTime> {
let year: i32 = match input[point..point + 4].parse() {
Ok(Cval) if val > 0 = val,
Ok(_) = return Err(ParseError::new_err("year needs to be above 0")),
— return Err(ParseError::new_err("invalid time string (year)")),

i

// Do a dash check, advance our point position accordingly
match input[point + 4..point + 5].as_ref() {

"-" = point = point + 5,

_ = point = point + 4,
¥

Llet month: u8 = match input[point..point + 2].parse() {

Ok(Cval) if (1..=12).contains(&val) = val,

Ok(_) = return Err(ParseError::new_err("month needs to be between 1-12")),
— return Err(ParseError::new_err("invalid time string (month)")),

i

// More code to split out the primary components from the date string...

return PyDateTime::new(py, vear, month, day, hour, minute, second, ms, Some(tz));

https://github.com/suhailpatel/riso8601/blob/master/src/lib.rs

47 @suhailpatel | YOW! 2023

Date Parsing in Python with Rust!

python3

import riso8601
riso8601.parse_datetime("2023-06-15T09:00:00-05:00")
datetime.datetime(2023, 6, 15, 9, 0, tzinfo=datetime.timezone(datetime.timedelta(seconds=-18000)))

riso8601.parse_datetime("bad timestamp")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
riso8601.ParseError: invalid time string (year)

48 @suhailpatel | YOW! 2023

Inflection points

i\

Stls‘tew\s Runtime cost

...... Deve,lopment / Org
Cost

49 @suhailpatel | YOW! 2023

New tricks

&) =)aval/

-XX:+UseZGC -Xmx=<max heap size>

50 @suhailpatel | YOW! 2023

2023-02-08 12:03:35
to

cluster kafka v

2023-02-08 15:03:35

uTc

CPU

5.50

4.50

o
L
(]

2.50

1.50

0.500

15:00

14:50

14:40

14:30

14:20

14:10

14:00

13:50

13:40

13:30

13:20

13:10

13:00

12:50

12:40

12:30

12:20

12:10

@suhailpatel | YOW! 2023

New tricks

150 -

Node.js 18
Node.js 16

binary

'

o o
0 5
1

(1enaq si Jaybiy) suoneiado Jo ajel

@suhailpatel | YOW! 2023

Gg=uoljelnp ,g-jin,=bulpoous
" s[a|lypeal/s}

Gg=uoljelnp ,l1ose,=bulpoous
" s[a|ypeal/s)

New tricks

Faster CPython

CPython 3.11 is an average of 25% faster than CPython 3.10 as measured with the pyperformance

benchmark suite, when compiled with GCC on Ubuntu Linux. Depending on your workload, the overall
speedup could be 10-60%.

This project focuses on two major areas in Python: Faster Startup and Faster Runtime. Optimizations
not covered by this project are listed separately under Optimizations.

https://docs.python.org/3/whatsnew/3.11.html

53 @suhailpatel | YOW! 2023

mapstructure
pedDecodeHook

0.05s (0.57%)
of 2.28s (25.79%)

0.99s

Y

reflect
Value
Convert
0.08s (0.9%)
0f 0.99s (11.20%)

mapstructure
DecodeHookExec

0.03s (0.34%)
of 2.37s (26.81%)

/56.595 1.55s

mapstructure
ComposeDecodeHookFunc
funcl
0.03s (0.34%)
of 1.59s (17.99%)

\\O 90s

} 1.17s

0.21s

10.28s

05s . 0.17s 0.79s
\\‘ |
gocassa | £
gocassa (*singleOp) . _ppro
CsingOp readOne. . 0.18s printStackRecord |
0 of 6.055 (68.44%) 0.01s (0.11%) ofb7;s(i394%) T ———
\t)fo.ns (1.92%) ; : | o
325 007s\0.73s 1008s 0.49s
' ’ < —
gocassa e Fp:'?ntf
- (*cassandraBackend) . .
0o 3305 (6097%) Query WitsOptons 0.02s (0.23%) 0.02s 0.01s
- | of 072 (8.14%)
- I —
— °5.39s jmss 0.68s
mapstructure tabwriter gocql
(*Decoder) (*Writer) (*Iter)
decode Write MapScan —_—
0.02s (0.23%) 0.06s (0.68%) 0.02s (0.23%) | e
of 5.39s (60.97%)v of 0.38s (4.30%) of 0.68s (7.69%)
5.10s)2.36s - 0.06s 0.19s - 0.09s . 0.30s
mapstructure ‘ o
(*Decoder) — U ewaten R
decodeStruct docodeMaaFromMap Write roy
O 158 (1 70%) 0 of 0.19s (2.15%) ?gig((z]lngg)b) 0.02s
. . - ~ , ‘ of 0.13s (1. - of 0.30
| of 5.10s (57.69%) |~ —_—
- //' / ‘ A ——) T e ——t E— ——
s 0.24 0.20 0.49s /0.03 0.11 0.02 023s 0.18 001s ~_0.14
strings A . —— > " | :
fmt 'e reflect | \ ' \
EqualFold 0.06s | Sprintf mapassign V' 0.15s Value | 0.05s M:
0.23s (260%) T 0%) %;s((zzl égbq)b) 0.06s (0.68%) o Oofoag ly 0%) | o 0.03:
of 0.24s (2.71%) / — of 0.515 (5.77%) b of 02
lo.11s / 0.01s 0.18s S 0025 001s) 007
. 4 Tl fmt '. * i 4
mqhme . (*pp) runtime Value L
mapiteriot 0.01s doPrintf | cvacuate 0.01s [0.07s Interface 0.06s
e, sy | SEED T
02 0.09s 1.02%) \" of 0.32s (3.62%) of0.18s (2.04%) | of 0225 249%)
0.03s 004s —— (0.22s 001s 001s - 0.20s - 0.28

Linux bcc/BPF Tracing Tools

c* java* node* php¥* mysqld_gslower
opensnoop statsnoop uca.lls uflow python* ruby* dbstat dbslower gethostlatency
syncsnoop uobjnew ustat

bashreadline memleak
\ uthreads ugc |

filetop

\ / sslsniff
A filelife fileslower - + / syscount
vfscount vfsstat Applications killsnoop
cachestat cachetop Runtimes execsnoop
dcstat dcsnoop “(/' exitsnoop
c

mount snoop System Libraries pidpersec

pudist cpuwalk
runglat runglen

trace
argdist \ System Call Interface rungslower
funccount \ ‘//

VES <

cpuunclaimed
funcslower Sockets deadlock
funclatency } .
ctackcount Scheduler offcputime wakeuptime
profile y File Systems / TCP/UDP A <4 offwaketime softirgs
_ slabratetop
btrfsdist Volume Manager IP : — oomkill memleak
btrfsslower Virtual
) shmsnoop drsnoop
ext4dist ext4dslower % . : Memory
nfsslower nfsdist 4 Block Device Net Device hardirqgs
xfsslower xfsdist criticalstat
zfsslower Device Drivers ttysnoo
V zfsdist / / ysnoop
mdflush piotop biosnoop tcptop tcplife tcptracer
. biolatency bitesize tcpconnect tcpaccept tcpconnlat 11ecstat |CPUs
Other: tcpretrans tcpsubnet tcpdrop >
capable sofdsnoop tcpstates

https://github.com/iovisor/bcc#tools 2019

https://github.com/iovisor/bcc
55 @suhailpatel | YOW! 2023

llama.cpp optimisations

B ggerganov /llama.cpp ' Public

<{> Code

(©) Issues

243

{9 Pull requests 54 () Discussions (») Actions [Projects 4 J wiki @ Security

Make loading weights 10-100x faster #6713

RV 0l jart merged 9 commits into ggerganov:master from jart:loader (5Jon Mar 30

() Conversation 37 -O- Commits 9 [Fl Checks 22 Files changed 11

&

jart commented on Mar 30

This is a breaking change that's going to give us three benefits:

1. Your inference commands should load 100x faster
2. You may be able to safely load models 2x larger

3. You can run many concurrent inference processes

This was accomplished by changing the file format so we can mmap()
weights directly into memory without having to read() or copy them
thereby ensuring the kernel can make its file cache pages directly
accessible to our inference processes; and secondly, that the file
cache pages are much less likely to get evicted (which would force
loads to hit disk) because they're no longer competing with memory
pages that were needlessly created by gigabytes of standard i/o.

The new file format supports single-file models like LLaMA 7b, and

it also supports multi-file models like LLaMA 13B. Our Python tool
now merges the foo.1, f0o.2, etc. files back into a single file so

that the C++ code which maps it doesn't need to reshape data every
time. That's made llama.cpp so much simpler. Much of its load code
has now been deleted.

Furthermore, this change ensures that tensors are aligned properly

An a 29 _huta hainindarns That anane tha AAar +A caninaA if wia Aan Aat

|~ Insights

Contributor

[\ Notifications

+717 =328 INEN

Reviewers

™
w SW

G pgoodman

maqy

<% bakkot

‘ Green-Sky

' ggerganov

Assignees

No one assigned

Labels

breaking change

Projects

None yet

Milestone

https://github.com/ggerganov/llama.cpp/pull/613

57

CdJd dJuddJddy

% Fork 4.1k Y7 Star 285k =~

@suhailpatel | YOW! 2023

Faster JSON parsing with simdjson

Performance results

The simdjson library uses three-quarters less instructions than state-of-the-art parser RapidJSON. To our
knowledge, simdjson is the first fully-validating JSON parser to run at gigabytes per second (GB/s) on commodity
processors. It can parse millions of JSON documents per second on a single core.

The following figure represents parsing speed in GB/s for parsing various files on an Intel Skylake processor (3.4
GHz) using the GNU GCC 10 compiler (with the -O3 flag). We compare against the best and fastest C++ libraries
on benchmarks that load and process the data. The simdjson library offers full unicode (UTF-8) validation and
exact number parsing.

30 F simdjson —
yyjson mmm—
RapidJSON =
JSON for M. C++

throughput (GB/s)

= = n n

o (&) o (6)]
|

o
(&)

0.0
partial tweets kostya distinct userid top tweet

The simdjson library offers high speed whether it processes tiny files (e.g., 300 bytes) or larger files (e.g., 3MB).

The following plot presents parsing speed for synthetic files over various sizes generated with a scripton a 3.4
GHz Skylake processor (GNU GCC 9, -03).

https://github.com/simdjson/simdjson

58 @suhailpatel | YOW! 2023

Wait, but why?

Many of the systems (apps, services, databases, caches, queues)
that we build/rely on are grounded on quite poor assumptions

for the hardware of today

59 @suhailpatel | YOW! 2023

Wait, but why?

Many of the systems (apps, services, databases, caches, queues)
that we build/rely on are grounded on quite poor assumptions

for the hardware of today

Software can keep pace, but there's some work needed to yield
huge results, power new kinds of systems and reduce compute

costs

60 @suhailpatel | YOW! 2023

The Joy of Building Large Scale Systems

Thank you!

Suhail Patel | @suhailpatel | https://suhailpatel.com

YOW! 2023

https://suhailpatel.com

