
YOW! 2023

Suhail Patel | @suhailpatel | https://suhailpatel.com

The joy of building large
scale systems

https://suhailpatel.com

@suhailpatel | YOW! 2023

 ChatGPT Prompt: Generate an image of a group of diverse software engineers
being afraid of the on-call pager going off

@suhailpatel | YOW! 2023

Wait, but why?

Many of the systems (apps, services, databases, caches, queues
etc.) that we build/rely on are grounded on quite poor assumptions

for the hardware of today

3

@suhailpatel | YOW! 20234

@suhailpatel | YOW! 20235

Suhail Patel
Senior Staff Engineer at Monzo

@suhailpatel

@suhailpatel | YOW! 20237

@suhailpatel | YOW! 20238

Latency numbers

Source: https://gist.github.com/jboner/2841832

L1 Cache Reference 0.5ns

L2 Cache Reference 7ns

Main Memory Reference 100ns

Send 1K bytes over 1 Gbps network 10,000ns

Read 4K bytes from SSD 150,000ns

Read 1MB sequentially from memory 250,000ns

Read 1MB from SSD 1,000,000ns

Disk Seek 10,000,000ns

@suhailpatel | YOW! 20239

Latency numbers

Source: https://gist.github.com/jboner/2841832

L1 Cache Reference 0.5ns

L2 Cache Reference 7ns

Main Memory Reference 100ns

Send 1K bytes over 1 Gbps network 10,000ns

Read 4K bytes from SSD 150,000ns

Read 1MB sequentially from memory 250,000ns

Read 1MB from SSD 1,000,000ns

Disk Seek 10,000,000ns

0.5 days

100 days

27 years

411 years

2.7 millenniums

27 millenniums

685 years

7.5 days

@suhailpatel | YOW! 202310

B-Trees are used in many index implementations

@suhailpatel | YOW! 2023

B-Tree

11

26 56 83

14 22

2 7

92 99

16 23 24 81 88 91

34 75

58

82

10090

@suhailpatel | YOW! 2023

Searching within a B-Tree

12

26 56 83

14 22

2 7

92 99

16 23 24 81 88 91

34 75

58

82

10090

@suhailpatel | YOW! 202313

@suhailpatel | YOW! 202314

@suhailpatel | YOW! 202315

Random & Sequential I/O

Source: The Pathologies of Big Data by Adam Jacobs (2009)
https://queue.acm.org/detail.cfm?id=1563874

@suhailpatel | YOW! 2023

Disks are really fast nowadays!

16

NVMe

SSD

HDD 2ms

0.2ms

0.02ms

Disk Seek Latency

@suhailpatel | YOW! 2023

Disks are really fast nowadays!

17

NVMe

SSD

HDD 200mbps

550mbps

3000Mbps

Disk Throughput

@suhailpatel | YOW! 202318

Source: https://download.semiconductor.samsung.com/
resources/white-paper/best-practices-for-mysql-with-ssds.pdf

Faster hardware = More throughput

@suhailpatel | YOW! 202319

Source: Improving I/O Performance via Address Remapping in NVMe Interface
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9947049

@suhailpatel | YOW! 202320

CPUs are getting faster

Source: Evolution of Single-threaded x86 CPU Performance
https://mlech26l.github.io/pages/2020/12/17/cpus.html

@suhailpatel | YOW! 2023

CPUs are getting faster

21

L1 Cache

c3.xlarge

c1.xlarge

c6i.xlarge

L2 Cache

c3.xlarge

c1.xlarge

c6i.xlarge

256 KB

512 KB

1024 KB

12 MB

25 MB

40 MB

@suhailpatel | YOW! 202322

CPUs are evolving

@suhailpatel | YOW! 202323

@suhailpatel | YOW! 202324

Networks are getting faster

@suhailpatel | QCon SF 202325

@suhailpatel | YOW! 202326

Latency numbers

Source: https://gist.github.com/jboner/2841832

L1 Cache Reference 0.5ns

L2 Cache Reference 7ns

Main Memory Reference 100ns

Send 1K bytes over 1 Gbps network 10,000ns

Read 4K bytes from SSD 150,000ns

Read 1MB sequentially from memory 250,000ns

Read 1MB from SSD 1,000,000ns

Disk Seek 10,000,000ns

} Much larger caches means
we would hit these caches more often

3-4x higher throughput

Much larger NICs

Much faster NVMe drives

100,000ns with NVMe

20,000ns with NVMe

20,000ns with DDR5

@suhailpatel | YOW! 202327

@suhailpatel | YOW! 202328

“No matter how fast processors get, software consistently finds new ways to
eat up the extra speed. Make a CPU ten times as fast, and software will usually
find ten times as much to do (or, in some cases, will feel at liberty to do it ten

times less efficiently)”

Free lunch?

Herb Sutter
http://www.gotw.ca/publications/concurrency-ddj.htm

@suhailpatel | YOW! 202329

“Efficiency and performance optimization will get more, not less, important”

Free lunch?

Herb Sutter
http://www.gotw.ca/publications/concurrency-ddj.htm

@suhailpatel | YOW! 202330

https://www.iea.org/data-and-statistics/charts/global-data-
centre-energy-demand-by-data-centre-type-2010-2022

@suhailpatel | YOW! 202331

https://community.intel.com/t5/Blogs/Thought-Leadership/Big-Ideas/
Four-principles-for-writing-energy-and-carbon-efficient-software

@suhailpatel | YOW! 202332

@suhailpatel | YOW! 202333

Thread per core

Shared Everything Architecture

Data

Core 4Core 1 Core 2 Core 3

main memory

cpu

@suhailpatel | YOW! 202334

Thread per core

Shared Nothing Architecture

Data

Core 4Core 1 Core 2 Core 3

Data Data Data main memory

cpu

@suhailpatel | YOW! 202335

Source: The Impact of Thread-Per-Core Architecture on Application Tail Latency
https://helda.helsinki.fi//bitstream/handle/10138/313642/tpc_ancs19.pdf

Thread per core

Shared Nothing Architecture

Data

Core 4Core 1 Core 2 Core 3

Data Data main memory

cpu

35

Network
Handler

@suhailpatel | YOW! 202336

https://seastar.io

@suhailpatel | YOW! 202337

io_uring

Source: https://developers.redhat.com/articles/2023/04/12/why-you-
should-use-iouring-network-io

https://developers.redhat.com/articles/2023/04/12/why-you-should-use-iouring-network-io
https://developers.redhat.com/articles/2023/04/12/why-you-should-use-iouring-network-io

@suhailpatel | YOW! 202338

https://www.phoronix.com/news/Linux-5.6-IO-uring-Tests

@suhailpatel | YOW! 202339

https://github.com/libuv/libuv/pull/3952

@suhailpatel | YOW! 202340

Systems programming languages

@suhailpatel | YOW! 202341

New tricks

https://pyo3.rs/v0.18.3/

@suhailpatel | YOW! 202342

Source: Energy Efficiency across Programming Languages
https://greenlab.di.uminho.pt/wp-content/uploads/2017/10/sleFinal.pdf

@suhailpatel | YOW! 2023

Date Parsing in Python

43

$ python3
Python 3.10.9 (main, Dec 15 2022, 17:11:09) [Clang 14.0.0 (clang-1400.0.29.202)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>"" import datetime
>>>"" datetime.datetime.fromisoformat('2023-06-15T09:00:00-05:00')
datetime.datetime(2023, 6, 15, 9, 0, tzinfo=datetime.timezone(datetime.timedelta(seconds=-18000)))

@suhailpatel | YOW! 202344

Date Parsing in Python with Rust!

$ pip install maturin 
 
$ maturin new riso8601
✔ 🤷 Which kind of bindings to use?
 📖 Documentation: https://""maturin.rs/bindings.html · pyo3
 ✨ Done! New project created riso8601 

$ cd riso8601 
$ ls 
Cargo.lock Cargo.toml pyproject.toml src target

@suhailpatel | YOW! 202345

Date Parsing in Python with Rust!

#["pyfunction]
fn parse_datetime<'p>(py: Python<'p>, input: &str) ->- PyResult<&'p PyDateTime> {
 //" Our implementation goes here..."" 
}

#["pymodule]
fn riso8601(_py: Python, m: &PyModule) ->- PyResult<()> {
 m.add_wrapped(wrap_pyfunction!(parse_datetime))?;
 Ok(())
}

src/lib.rs

@suhailpatel | YOW! 202346

Date Parsing in Python with Rust!

2023-06-15T09:00:00-05:00

Year
Month

Day

Hour
Minute

Second

Timezone

datetime.datetime(2023, 6, 15, 9, 0, tzinfo=
datetime.timezone(datetime.timedelta(days=-1, seconds=68400)))

@suhailpatel | YOW! 202347

#["pyfunction]
fn parse_datetime<'p>(py: Python<'p>, input: &str) ->- PyResult<&'p PyDateTime> { 
 let year: i32 = match input[point.."point + 4].parse() {
 Ok(val) if val > 0 =>= val,
 Ok(_) =>= return Err(ParseError::"new_err("year needs to be above 0")),
 _ =>= return Err(ParseError::"new_err("invalid time string (year)")),
 };

 //" Do a dash check, advance our point position accordingly
 match input[point + 4.."point + 5].as_ref() {
 "-" =>= point = point + 5,
 _ =>= point = point + 4,
 }

 let month: u8 = match input[point.."point + 2].parse() {
 Ok(val) if (1..=""12).contains(&val) =>= val,
 Ok(_) =>= return Err(ParseError::"new_err("month needs to be between 1-12")),
 _ =>= return Err(ParseError::"new_err("invalid time string (month)")),
 };
 
 
 //" More code to split out the primary components from the date string..."" 

 return PyDateTime::"new(py, year, month, day, hour, minute, second, ms, Some(tz));
}

https://github.com/suhailpatel/riso8601/blob/master/src/lib.rs

src/lib.rs

@suhailpatel | YOW! 202348

$ python3
Python 3.10.9 (main, Dec 15 2022, 17:11:09) [Clang 14.0.0 (clang-1400.0.29.202)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>"" import riso8601
>>>"" riso8601.parse_datetime("2023-06-15T09:00:00-05:00")
datetime.datetime(2023, 6, 15, 9, 0, tzinfo=datetime.timezone(datetime.timedelta(seconds=-18000))) 

>>>"" riso8601.parse_datetime("bad timestamp")
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
riso8601.ParseError: invalid time string (year)

Date Parsing in Python with Rust!

@suhailpatel | YOW! 202349

Inflection points

@suhailpatel | YOW! 202350

New tricks

-XX:+UseZGC -Xmx=<max heap size>

@suhailpatel | YOW! 202351

@suhailpatel | YOW! 202352

New tricks

@suhailpatel | YOW! 202353

New tricks

https://docs.python.org/3/whatsnew/3.11.html

@suhailpatel | YOW! 202354

@suhailpatel | YOW! 202355

eBPF

https://github.com/iovisor/bcc

@suhailpatel | YOW! 202356

@suhailpatel | YOW! 202357

https://github.com/ggerganov/llama.cpp/pull/613

llama.cpp optimisations

@suhailpatel | YOW! 202358

https://github.com/simdjson/simdjson

Faster JSON parsing with simdjson

@suhailpatel | YOW! 2023

Wait, but why?

59

Many of the systems (apps, services, databases, caches, queues)
that we build/rely on are grounded on quite poor assumptions

for the hardware of today

@suhailpatel | YOW! 2023

Wait, but why?

Many of the systems (apps, services, databases, caches, queues)
that we build/rely on are grounded on quite poor assumptions

for the hardware of today

Software can keep pace, but there’s some work needed to yield
huge results, power new kinds of systems and reduce compute

costs

60

YOW! 2023

Thank you!
Suhail Patel | @suhailpatel | https://suhailpatel.com

The Joy of Building Large Scale Systems

https://suhailpatel.com

