
A KAFKAESQUE
SERIES OF EVENTS

LILY MARA

ONCE UPON A TIME

ONCE UPON A TIME
 8B notifications/day

ONCE UPON A TIME
 8B notifications/day
 10 backend engineers

ONCE UPON A TIME
 8B notifications/day
 10 backend engineers
 Make simplifying
assumptions

PROBLEM
PUT https://onesignal.com/api/v1/players/{SUBSCRIPTION_ID}
{
 "app_id": "{APP_ID}",
 "tags": {
 "first_name": "Jon",
 "last_name": "Smith",
 }
}

Mobile Push
SMS Web push

Subscription A: account-type=VIP

Subscription B: account-type=VIP

Subscription C: account-type=user

PUT /api/v1/players/A UPDATE id=A

OK
200 OK

QUEUE

QUEUE
Queue

Enqu
eu

e Dequeue

CONSUMER
Topic

.send()

.po
ll()

4 3 2 1 0 0

Consumer A
Current: 0

Consumer A
Current: 1.commit(0)

Producer

CONSUMER

Topic

.send()

.po
ll()

4 3 2 1 0

0

Consumer A
Current: 0

Consumer B
Current: 2

2

.poll()

Consumer A
Current: 1.commit(0)

Consumer B
Current: 3.commit(2)

Producer

PARTITION

Partition 0

.send(0)

4 3 2 1 0

Topic

Partition 1

2 1 0

Consumer A

0

2

P1: 2

P0: 1
Consumer A

2

P1: 2

P0: 2

.commit(0, 1)

ROUND-ROBIN

2 1 0

2 1 0

2 1 0

P0

P1

P2

EXPLICIT

2 1 0

2 1 0

2 1 0

P0

P1

P2

CONCURRENT WRITES

2 1 0

2 1 0

2 1 0

P0

P1

P2

2 1 0

P3

ISSUES

ISSUES
 Inflexible

ISSUES
 Inflexible
 Kafka
repartitioning

REPARTITIONING

2 1 0

2 1 0

2 1 0

P0

P1

P2

2 1 0

P3

1 0

1 0

1 0

P0

P1

P2

1 0

P3

Topic - 4 partitions

Topic - 6 partitions

1 0

P4

1 0

P5

SUBPARTITION
PROCESSING

SUBPARTITION PROCESSING

Partition 0

4 3 2 1 0

Topic

Partition 1

Consumer

0

1

W1

W0

Partition 0

2

W2

3

W3

Partition 1

ISSUE

0

1

W1

W0

Partition 0

2

W2

W3

Partition 1

3

?????

Consumer

COMMIT(0)

0

1

W1

W0

Partition 0

2

W2

W3

Partition 1

3

Partition 0

4 3 2 1 0

COMMIT

COMPLETE

Consumer

COMMIT(3)

1

W1

W0

Partition 0

2

W2

W3

Partition 1

3

Partition 0

4 3 2 1 0

COMMIT

COMPLETE

Consumer

SOLUTION

1

W1

W0

Partition 0

2

W2

W3

Partition 1

3

Commit

buffer

Consumer

0

1

2

COMMIT(0)

1

W1

W0

Partition 0

2

W2

W3

Partition 1

3

Partition 0

4 3 2 1 0

Commit

buffer

Consumer

1

2
COMPLETE

COMMIT(3)

W1

W0

Partition 0

W2

W3

Partition 1

3

Partition 0

4 3 2 1 0

Commit

buffer

Consumer

1

2
COMPLETE

CONCESSION

CONCESSION
 at-least-once delivery

CONCESSION
 at-least-once delivery
 messages will be
replayed

CONCESSION
 at-least-once delivery
 messages will be
replayed
 design around this

REVIEW

REVIEW
kafka topic

REVIEW
kafka topic
contains partitions - queues

REVIEW
kafka topic
contains partitions - queues
message has incrementing offset

REVIEW
kafka topic
contains partitions - queues
message has incrementing offset
producers enqueue

REVIEW
kafka topic
contains partitions - queues
message has incrementing offset
producers enqueue
consumers dequeue

REVIEW
kafka topic
contains partitions - queues
message has incrementing offset
producers enqueue
consumers dequeue
consumer concurrency via partitioning and
subpartitioning

REVIEW
kafka topic
contains partitions - queues
message has incrementing offset
producers enqueue
consumers dequeue
consumer concurrency via partitioning and
subpartitioning
consumer performing PG writes

POSTGRES WRITES

CONCURRENCY

SET a=10

SET a=20

W0

Partition 0

W2

SET a=10

0

SET a=20

1
a=20

CONCURRENCY

SET a=10

W0

Partition 0

W2

SET a=10

0
a=20

a=10

GOALS

GOALS
 maximize concurrency

GOALS
 maximize concurrency
 minimize contention

GOALS
 maximize concurrency
 minimize contention
 no concurrent updates to single
row

SUBPARTITION QUEUES

4 3 2 1 0

3 2 0

4 1

real queue

blue queue

red queue

red processor

blue processor

1

0

ALL TOGETHER
Partition 0

.send(0)

4 3 2 1 0

Producer

Topic

Partition 1

2 1 0

Consumer

2 0

1

3

4

blue processor

0

red processor

1

1

2 0

orange processor

1

green processor

0

P0

P1

Commit buffer

Commit buffer

.send(1)

ANOTHER ISSUE

ANOTHER ISSUE
 In-memory queuing

ANOTHER ISSUE
 In-memory queuing
 Memory overloads

ANOTHER ISSUE
 In-memory queuing
 Memory overloads
 Cap on messages in
memory

SUDDENLY
everything was fine

SUDDENLY
everything was fine

until it wasn't

🚨🚨🚨

LAG

time

fine not fine

??

CPU

time

CPU

time

IDLE

CONNS

time

IDLE

CONNS

time

EXPECTATION

REALITY

OBSERVABILITY

OBSERVABILITY
 Only metrics

OBSERVABILITY
 Only metrics
 Unstructured logs on boxes

OBSERVABILITY
 Only metrics
 Unstructured logs on boxes
 I insisted on getting centralized
logging

{
 "app_id": "9...",
 "subscription_id": "6...",
 "sql": "UPDATE ... WHERE id=6...",
 "hostname": "consumer-01"
}

Count

clothes.ly

next largest customer

other customers

Count

other clothes.ly

next largest customer

other customers

clothes.ly S1

WHAT?

WHAT?
 Tons of individual
updates

WHAT?
 Tons of individual
updates
 Incompatible updates

WHAT?
 Tons of individual
updates
 Incompatible updates
 Location moving all over

location color level device type identifier
Chicago

NYC

Tokyo

Red VIP email admin@clothes.ly

Blue User email admin@clothes.ly

Pink Anon email admin@clothes.ly

👀

ONESIGNAL

ONESIGNAL
 More than just push

ONESIGNAL
 More than just push
 Omnichannel
messaging

ONESIGNAL
 More than just push
 Omnichannel
messaging
 Push, email, sms, in-
app

setEmail

setEmail

Subscription A
Push

setEmail("user@website.com");

Subscription Z: Email (user@website.com)

Browser

Subscription A
Push

Subscription Z
Email

Browser

Subscription A: Web Push parent: Z

COUNT(*) ...
5,000,000

COUNT(*) ... WHERE parent_player_id=S1
4,800,000

S1 Update

Other Update

WHY IS THAT A
PROBLEM?

Q0

Q1

Q2

Q0

Q1

Q2

OK BUT IN REALITY
IT WAS WORSE

WHAT DID WE DO?

WHAT DID WE DO?
 Skip the updates

WHAT DID WE DO?
 Skip the updates
 Fix message limiting

WHAT DID WE DO?
 Skip the updates
 Fix message limiting
 Limit subscription
linking

WHAT DID WE
LEARN?

WHAT DID WE
LEARN?

 Users are creative

WHAT DID WE
LEARN?

 Users are creative
 Scope limits as small as
possible

WHAT DID WE
LEARN?

 Users are creative
 Scope limits as small as
possible
 Centralized observability

LILYMARA.XYZ

