,.> v . ()

(-

Adrlan S Greatest~H|ts B-Sifles and Re-issues

Adrian Cockcroft | YOW | December 2022

@adrianco@mastodon.social

Like a classic rock band on their annual
“farewell and we aren’t dead yet tour”

| know you just want to hear the hits, but |
want to sneak in some stuff | like too...

(Headbanging optional)

a '— <
Adrian in 1982
https://soundcloud.com/adrian-cockcroft/black-tiger-dont-look-back

Setlist
Black Tiger - Don't Look Back - 1982
Netflix in the Cloud - QconSF 2010, Cassandra Summit 2011
Microservices - Various MicroXchg Berlin talks
Cloud Trends - GigaOM Structure - 2016 reissue

Communicating Sequential Goroutines - Gopkevcon - 2016
Lego spaceships and the kitchen sink - AWS - 2017-2019
DevSusOps - a track from the new album you don't want to hear

Encore
Bottleneck Analysis - GOTO Adrhus - 2013

https://soundcloud.com/adrian-cockcroft/black-tiger-dont-look-back?in=adrian-cockcroft/sets/black-tiger-bedford-civic-hall

This talk features "singles” from these “albums”

Netflix in the Cloud

Communicating Sequential Goroutines

Adrian Cockeroft @adrianco
Technology Fellow - Battery Ventures
July 2016

Battery Ventures

Replacing Datacenter Oracle with
Global Apache Cassandra on AWS

Battery Ventures

The New De-Normal

Kitchen Sink
Analogy

Adrian Cockeroft @adrianco
Adrian Cockeroft @adrianco Technology Fellow - Battery Ventures
October 2016

Technology Fellow - Battery Ventures
August 2016

Battery Ventures

Netflix in the Cloud

We stopped building our own
datacenters

“The cloud lets its users focus
on delivering differentiating
business value instead of
wasting valuable resources

on the undifferentiated

heavy lifting that makes
up most of IT
infrastructure.”

Werner Vogels
Amazon CTO

amazon NETELIX

What, Why and How?

Goals

Faster
— Lower latency than the equivalent datacenter web pages and API calls

— Measured as mean and 99 percentile
— For both first hit (e.g. home page) and in-session hits for the same user

Scalable
— Avoid needing any more datacenter capacity as subscriber count increases
— No central vertically scaled databases
— Leverage AWS elastic capacity effectively

Available
— Substantially higher robustness and availability than datacenter services

— Leverage multiple AWS availability zones
— No scheduled down time, no central database schema to change

Productive
— Optimize agility of a large development team with automation and tools
— Leave behind complex tangled datacenter code base (~8 year old architecture)

— Enforce clean layered interfaces and re-usable components
NETELIX

Old Datacenter vs. New Cloud Arch

Distributed Key/Value NoSQL
Shared Memcached Session
Latency Tolerant Protocols
Layered Service Interfaces
Instrumented Service Patterns
Lightweight Serializable Objects

Components as Services

Tangled Service Interfaces

* Datacenter implementation is exposed
— Oracle SQL queries mixed into business logic

* Tangled code

— Deep dependencies, false sharing

* Data providers with sideways dependencies
— Everything depends on everything else

Anti-pattern affects productivity, availability

Untangled Service Interfaces

* New Cloud Code With Strict Layering

— Compile against interface jar

— Can use spring runtime binding to enforce
* Service interface is the service

— Implementation is completely hidden

— Can be implemented locally or remotely

— Implementation can evolve independently

Untangled Service Interfaces

Two layers:

e SAL - Service Access Library

— Basic serialization and error handling
— REST or POJO’s defined by data provider

* ESL - Extended Service Library
— Caching, conveniences
— Can combine several SALs
— Exposes faceted type system (described later)
— Interface defined by data consumer in many cases

Service Interaction Pattern
Sample Swimlane Diagram

First time request. mew wser, no cache hits, call cache service first, no nead to notify

ESENTATION LAYER IENT

N

1 ress
r

R
R dcseraiioe
|best af¥ort |
|-1.\'v e

Process request

returmn resun

[retum roaui

savee for

0P J retiyn . - l‘ B PUT key/vaiue

-

sdate Ol cacte J CAL >) LenJe ' |n' Wt Lme
|
|

stop

NETELIX

Boundary Interfaces

* |solate teams from external dependencies
— Fake SAL built by cloud team
— Real SAL provided by data provider team later
— ESL built by cloud team using faceted objects

* Fake data sources allow development to start
— e.g. Fake Identity SAL for a test set of customers
— Development solidifies dependencies early
— Helps external team provide the right interface

One Object That Does Everything

» Datacenter uses a few big complex objects
— Movie and Customer objects are the foundation
— Good choice for a small team and one instance
— Problematic for large teams and many instances

* False sharing causes tangled dependencies
— Unproductive re-integration work

Anti-pattern impacting productivity and
availability

An Interface For Each Component

* Cloud uses faceted Video and Visitor
— Basic types hold only the identifier
— Facets scope the interface you actually need
— Each component can define its own facets

* No false-sharing and dependency chains
— Type manager converts between facets as needed
— video.asA(PresentationVideo) for www
— video.asA(MerchableVideo) for middle tier

Response to 2010 talk was a mixture of incomprehension

and confusion. Most people thought we were crazy and
would be back in our datacenters when it failed...

Replacing Datacenter Oracle with
Global Apache Cassandra on AWS

Get stuck with wrong conmig

Walt o File tickets
Ask permission Wailt Wait

VWaie Things We Don’t Do W&t

Run out of space/power
Plan capacity in acvance

Have meetings with IT V2 iy

: NETFLIX .
4_Oata Center Netflix could not

build new
- datacenters fast

enough

Out-Growing Data Center

http://techblog.netflix.com/2011/02/redesigning-netflix-api.html

Netflix APl : Growth in Requests

.
5
=

37x Growth Jan
2010-Jan 2011

Requests |

Datacenter
Capacity

High Availability

* Cassandra stores 3 local copies, 1 per zone
— Synchronous access, durable, highly available
— Read/Write One fastest, least consistent - ~1ms

— Read/Write Quorum 2 of 3, consistent - ~3ms

* AWS Availability Zones
— Separate buildings

— Separate power etc.
— Close together

NETFLIX

Remote Copies

e Cassandra duplicates across AWS regions
— Asynchronous write, replicates at destination
— Doesn’t directly affect local read/write latency

* Global Coverage {

— Business agility
— Follow AWS...

* Local Access
— Better latency
— Fault Isolation

Chaos Monkey (

amazon
webservices™

Make sure systems are resilient
— Allow any instance to fail without customer impact

Chaos Monkey hours

— Monday-Thursday 9am-3pm random instance Kkill

Application configuration option

— Apps now have to opt-out from Chaos Monkey
Computers (Datacenter or AWS) randomly die
— Fact of life, but too infrequent to test resiliency

Architecture design control

Be sure you can auto-scale down!

Response to 2011 progress was that Netflix was a Unicorn,

and while it might work for us, it wasn’t relevant to others

Adrian Cockcroft @adrianco
Technology Fellow - Battery Ventures

B‘ / August 2016

Battery Ventures

| E—

Previous Cloud Trend Updates

GigaOM Structure May 2014
D&B Cloud Innovation July 2015
GigaOM Structure November 2015

Trends from 2014: Noted as appropriate

Adoption

Why am | here?

/

/BV.

| Battery Ventures

| 2014

By Simon Wardley http://enterpriseitadoption.com/

@adrianco’s job at the
intersection of cloud
and Enterprise IT,
looking for disruption
and opportunities.

Disruptions in 2016
coming from server-
less computing and
teraservices.

- O

In 2014 Enterprises finally embraced
public cloud and in 2015 serious
deployments are under way.

. Oct 2014 Lydia Leong Oct 2015
- Lydia Leong o We're really seeing serious movement of the

A banks to the cloud at this point. Huge sea
What a difference a year makes. My change in attitudes.

sartnerSYM 1:1s this year, everyone's
already comfortably using laaS adrian cockeroft
(overwhelmingly AWS, bit of Azure). "We can oprate more se

Some enterprise vendor

responses to cloud and container
ecosystem growth...

a2

DAL The ship is sinking, let’s re-brand as a submarine!

EMC The ship is sinking, let’s merge with a submarine!

—

Look! we cut our ship in two really quickly! wewetPpackard

Enterprise

Trends: Microservices

(=] MICTIOServICes

MicroXchg Berlin event where a
group of speakers including
@adrianco adopted the term

Felb J013

Microservices: Why, What and How

Battery Ventures

l Typical reactions to my Netflix talks...

“What Netflix is doing

won’t work”
- 2010

“You guys are
crazy! Can’t

believe it”
- 2009

It only works for
‘Unicorns’ like
Netflix”

- 2011

“We'd like to do
that but can’t’

- 2012

“We're on our way using
Netflix OSS code”

- 2013

——

. What | learned from my time at Netflix

N

-Speed wins in the marketplace

-Remove friction from product development

-High trust, low process, no hand-offs between teams
-Freedom and responsibility culture

-Don’t do your own undifferentiated heavy lifting
-Use simple patterns automated by tooling

-Self service cloud makes impossible things instant

-

-{"N"VAT"’N "”‘
->‘C%'LZZL‘,‘-’;‘S BIG DATA
o B

S W

CULTURE

Non-Destructive Production Updates

e “Immutable Code” Service Pattern
e Existing services are unchanged, old code remains in service
e New code deploys as a new service group
e No impact to production until traffic routing changes
e A|B Tests, Feature Flags and Version Routing control traffic
e First users in the test cell are the developer and test engineers

® A cohort of users is added looking for measurable improvement

—

| What Happened?

Rate of change
increased

g

Cost and size and
risk of change
reduced

—

l It’s what you know that isn’t so

e Make your assumptions explicit

e Extrapolate trends to the limit

o Listen to non-customers
e Follow developer adoption, not IT spend
e Map evolution of products to services to utilities

e Re-organize your teams for speed of execution

L

If every service has to be
updated at the same time

it’s not loosely coupled I >

Microservice Definition

Loosely cou@serv'

architecture with.bounded contexts

If you have to know too much about surrounding
services you don’t have a bounded context. See the
Domain Driven Design book by Eric Evanes.

Speeding Up The Platform

Datacenter Snowflakes Virtualized and Cloud Container Deployments Lambda Deployments
» Deploy in months » Deploy in minutes » Deploy in seconds » Deploy in milliseconds

* Live for years * Live for weeks * Live for minutes/hours * Live for seconds

B» AWS Lambda is leading exploration of serverless architectures in 2016

Separate Concerns with Microservices

e Invert Conway’s Law — teams own service groups and backend stores
e One “verb” per single function micro-service, size doesn’t matter

e One developer independently produces a micro-service

e Each micro-service is it’s own build, avoids trunk conflicts

e Deploy in a container: Tomcat, AMI or Docker, whatever...

e Stateless business logic. Cattle, not pets.

e Stateful cached data access layer using replicated ephemeral instances

http://en.wikipedia.org/wiki/Conway's_law ‘

In Search of
Certainty

/

The Science of Otir
Information Infrastructure

Glonn O'Ponnel —%

Mark Burg}es’s;'

Release It!

Design aesd Deploy
Production-Ready Softwaee

M bt § Nt

A~ I

Drift into
Failure

Inspiration

SYSTEMS
THINKING

Managing
Chaos and Complexity

Jesiqnine

Jex Hemble, banoe Voiesy & Bary 0l

LEAN

ENTERPRISE

How High Performance
Organize
Innovate at Scale

The /, / E.
Principles of / //

Product
Development

FLOW

Second Generation
Lean Product Development
A

DONALD G, RENERTSEN

Dsiyieg web APt ot evebpes wil e 6

Irresistible APIs, ~

LW TRAE AT BETLILL RS St

THE BLACK SWAN

TthO

Programming
Language

Alan A. A. Donovan
Brian W. Kemighan

L

| G—

What's Missing?
]

Em——— N
) Advanced Microservices Topics

Failure injection testing
Versioning, routing
Binary protocols and interfaces
Timeouts and retries
Denormalized data models
Monitoring, tracing
Simplicity through symmetry

@adrianco

Battery Ventures

——

() Benefits of version aware routing

N

Immediately and safely introduce a new version
Canary test in production
Use DIY feature flags, , A|B tests with Wasabi

Route clients to a version so they can’t get disrupted
Change client or dependencies but not both at once

Eventually remove old versions
Incremental or infrequent “break the build” garbage collection

@adrianco

Battery Ventures

——

O Timeouts and Retries

N

Connection timeout vs. request timeout confusion
Usually setup incorrectly, global defaults
Systems collapse with “retry storms”
Timeouts too long, too many retries

Services doing work that can never be used

@adrianco

Battery Ventures

——

O Timeouts and Retries

N
Bad config: Every service defaults to 2 second timeout, two retries

. '.‘ .

If anything breaks, everything upstream stops responding

= OE

Retries add unproductive work

@adrianco

Battery Ventures

——

O Timeouts and Retries

N
Bad config: Every service defaults to 2 second timeout, two retries

>

First request from Edge timed out so it ignores the successful
response and keeps retrying. Middle service load increases as
it’s doing work that isn’t being consumed

@adrianco

Battery Ventures

——

@ Timeout and Retry Fixes

N

Cascading timeout budget
Static settings that decrease from the edge
or dynamic budget passed with request

How often do retries actually succeed?
Don’t ask the same instance the same thing
Only retry on a different connection

——

O Timeouts and Retries

N

Budgeted timeout, one retry

v

1s
1s

3s

I_ Fast fail
response
after 2s

Upstream timeout must always be longer than
total downstream timeout * retries delay

@adrianco

Battery Ventures

No unproductive work while fast failing

O Timeouts and Retries

Budgeted timeout, failover retry

For replicated services with multiple instances
never retry against a failed instance

3s

Successful
response
delayed 1s

@adrianco

Battery Ventures

No extra retries or unproductive work

“We see the world as increasingly more complex and chaotic
because we use inadequate concepts to explain it. When we
understand something, we no longer see it as chaotic or complex.”

Jamshid Gharajedaghi - 2011
Systems Thinking: Managing Chaos and Complexity: A Platform for Designing Business Architecture

@adrianco

Battery Ventures

| wanted to learn Go, and build something |
could talk about at events. | ported an actor-
based simulator from Occam to Go and
generated large complex simulated microservice

graphs with it using Go channels as networks.

Then | gave a talk at Gophercon about the
history of channels...

Communicating Sequential Goroutines

Adrian Cockcroft @adrianco
Technology Fellow - Battery Ventures
July 2016

BV

Battery Ventures

Agenda

1978 Communicating Sequential Processes
1983 Occam
How Channels Work
1992 Pi-Calculus
2013 The Life of Occam-Pi
2006 Occam-Pi based simulation
Pi-Calculus ideas in Go
Go Applications

Programming S. L. Graham, R. L. Rivest
Techniques Editors

Communicating
Sequential Processes
C.A.R. Hoare

The Queen’s University
Belfast, Northern Ireland

" This paper suggests that mput and outpat are basic
primitives of programming and that parallel
composition of communicating sequential processes is a
fundamental program structuring method. When
combined with a development of Dijkstra's guarded
command, these concepts are surprisingly versatile.
Their use is illustrated by sample solutions of a varfety
of familiar programaming exercises,

Key Words and Phrases: programming,
programming languages, programming primitives,
program structures, parallel programming, concurrency,
input, output, guarded commands, nondeterminacy,
coroutines, procedures, multiple entries, multiple exits,
classes, data representations, recursion, conditional
critical regions, monitors, iterative arrays

CR Categorfes: 4.20, 4.22, 4.32

“...the concepts and notations
introduced in this paper (although
described in the next section in the
form of a programming language
fragment) should not be regarded
as suitable for use as a
programming language, either for
abstract or for concrete programming.
They are at best only a partial solution
to the problems tackled.”

CSP Issues:

Not a full language
Hard to read
Process addressing

David May’s Occam Language

Extremely simple and elegant
implementation of CSP as a language

Adds named channels
Designed as the assembly language for Transputer hardware

Occam is intended to be the smallest language which _is _agequgte
for its purpose; however, suggestions for further simplification

would be welcome.

Comparing Occam and Go

Parallel Channel Assignment

<-c }0

PROC main(CHAN out) func mal“(‘),a]{c %y int
VAR x,y: Ml 1,
SEg = 1 c := make(chan int)
CHAN c: var wg sync.WaitGroup
PAR wg.Add(2)
clx go func() { defer wg.Done(); c <- x }()
c?y go fu?c() { defer wg.Done(); y =
out!y wg.WalF()
fmt.Println(y)
}

Pi-Calculus
Robin Milner 1992

A Calculus of Mobile Processes, |
Rosin ML
Universiry of Edmburgh, Scotland
JoacHm Parrow

Swedirh In of Comy Science, Kiste, Sweden

AND

Davip WaLKER

Unieersity of Warwick, Enghand

We present the s-caloules, & caloudes of communicating systems in which coe can
naturally expeess processes which have changing structure. Not oaly may the com-
poaent agents of a system be arbitrandy koked, but 2 communiation between
seghbours may carry information which changes that Snkage The caloulss s an
extension of the peocess algebra CCS, following work by Enghorg and Nocken, who
added mobslity to CCS while praserving its algebraic properties. The =-calloslus
pains umphcaty by removing sl distection detween varables and comstasts. com-
menication hinks are sdeabfied by names, sad computation represented purely as
the communication of names across haks After as lustrated description of how
the n-calculis peseralises conventional process algebeas in treating mobdlity. several
examples exphoiting mobslity are pven in some detail The importast examples are
the encoding mto the n-culoubas of higher.ondor functions (the J-<alculus and com-
bisatory algebea), the transminsion of processes as values, and the repeesestation of
data structures & peocesses. The paper continses by preseating the algebraic theory
of stromg Misimilarsty and sirong equinalence, icluding 3 new potion of eguivalence
indexed by diincrons—ie, assumptions of ineguality among names. These
theorses are based spon & semantics in dorms of 3 labelied tranution system and
a soticn of mvony Maswslation, both of which sre expounded in detad = o
companion paper. We alio report Brselly on work-in-progress based wpon the
correspoading notion of weuk biumulation, In which imernal actioss cannot be
obscrved. © 190 At Parw, Ine

We present the sm-calculus, a
calculus of communicating
systems in which one can
naturally express processes
which have changing
structure. Not only may the
component agents of a
system be arbitrarily linked,
but a communication
between neighbours may
carry information which
changes that linkage.

In this paper we do not present the basic semantics of the calculus; this
is done in our companion paper (Milner, Parrow, and Walker, 1989), in
the same style as in CCS, namely as a labeled transition system defined by
structural inference rules. In that paper the notions of strong bisimulation
and strong equivalence are also defined; the latter is a congruence relation,
s0 it may be understood as (strong) semantic equality. Here, we shall rely
somewhat upon analogy. with the transitions of CCS agents. In particular,
we assume simple transitions such as

(o4 X Pt)+ 12).Q4 o)== P|Q{x/z)
and simple equations such as
(¥Nix.P| f(z).Q)=2.(yNP|Q{x/z})

A triumph of notation
over comprehension.

Simple equations such as.

It’s easy to show that...

This paper is
incomprehensible!

26 MILNER., PARROW, AND WALKER

It is illuminating to see how the encoding of a particular example

behaves. Consider (Axx)N: first, we have
[ixx]om e{x)(w). Xw.
So, assuming x not free in N,
[lAxx)NJu= (v)(fAxx] ol (x)dxu.x(w). [N]w)

= (v)(vfxHw). Zw|lx)ixu.x(w) [NIw)

=t (o)Nx)e{w).xw|ou.xiw). [N]Iw)

= t.t. (o) x)(%u| x(w). [N]w)

= (o) xH0 [INJu)=r.r.0. [N w
More generally, it is easy to show that

[(AXMINJu=IM{N/x}]u,

(36)

Communicating Process Architectwres 2013 293
PH. Welch et al. (Eds.)

Open Channel Publishing Lid., 2013

© 2013 The authors and Open Channel Publishing Ltd. All rights reserved.

Life of occam-Pi

Peter H. WELCH

School of Computing, University of Kent, UK
p-h.welch@kent.ac.uk

Abstract. This paper considers some questions prompted by a brief review of the
history of computing. Why is programming so hard? Why is concurrency coasidered
an “advanced” subject? What's the matier with Objects? Where did all the Maths go?
In searching for answers, the paper locks at some concerns over fundamental ideas
within object orientation (as represented by modem programming languages), before
focussing om the concurrency model of commeunicating processes and its particular
expression in the occam family of languages. In that focus, it looks at the history
of occam, its underlying philosophy (Ockham's Razor), its semantic foundation on
Hoare's CSP, its principles of process oriented design and its development over almost
three decades into occam-x (which blends in the concurrency dynamics of Milner's
m-calculus). Also presented will be an urgent need for rationalisation ~ oocam-= is an
experiment that has demonstrated significant results, but now needs time to be spent
on careful review and implementing the conclusions of that review, Finally, the future
is consadered. In particullar, is there a future?

Keywords. process, object, local reasoning, global reasoning, occam-pi, concusrency,
compositionality, verification, multicore, efficiency, scalability, safety, simplicity

...looks at the history of
occam, its underlying
philosophy (Ockham’s
Razor), its semantic
foundation on Hoare’s
CSP, its principles of
process oriented design
and its development over
almost three decades into
occam-it (which blends in
the concurrency dynamics
of Milner’s st-calculus).

Go- ‘@‘

Dynamic Channel Protocol
Actor Pattern
Partitioned Service Registry
Logging and Tracing

Dynamic Channel Protocol

https://github.com/adrianco/spigo/tree/master/tooling/gotocol

Imposition/Intention? https://en.wikipedia.org/wiki/Promise_theory

ch <-gotocol.Message{gotocol.GetRequest, listener, now, ctx, "why?"}

// Message structure used for all messages, includes a channel of itself
type Message struct {

Imposition Impositions // request type

ResponseChan chan Message // place to send response messages

Sent time.Time // time at which message was sent
Ctx Context // message context
Intention string // payload

——

@ Simulated Microservices

Denominator
DNS Endpoint

Model and visualize microservices
. Simulate interesting architectures
availabiity Generate large scale configurations

Zones

ELB Load Balancer *

Zuu 8 Eventually stress test real tools

API Proxy « » °h
Baamoss Logic Code: github.com/adrianco/spigo
Stash Simulate Protocol Interactions in Go
DataAccessLayer o # 4 Visualize with D3

® o %y . . .
@ See for yourself: http://simianviz.surge.sh
Priam @

Cassandra Datastore g~ ® Follow @simianviz for updates r‘%

Conclusions

CSP is too limited

m-Calculus syntax is incomprehensible

Occam-Pi makes CSP and n-Calculus readable

Go concurrency syntax is clumsy in places but works
Showed some useful channel based Go-m idioms
Pass channels over channels for dynamic routing

Go works well for actor like simulation

Adrian signed to a new label (AWS) at the end of
2016 and now had a much bigger production

budget for making slides look cool, and a PR
department to keep him from being too
controversial!

The New De-Normal aws

Monolithic Kitchen Sink e-normallzed
Databases Analogy

Expensive,
Hard to Create
and Run

AN
Monolith E

H /_/

Expensive,

Hard to Create
and Run

Database Schema

Entity Relationship

Database Schema

Entity Relationship

Database Schema

Entity Relationship

Kitchen Sink

Analogy

Kitchen Sink

Cleanup

Kitchen Sink

Cleanup

Kitchen Sink

Cleanup

Kitchen Sink

Cleanup

Kitchen Sink

Cleanup

Kitchen Sink

Cleanup

Kitchen Sink

Cleanup

Consistency
Problem

How Many Complete
Sets Are There?

Consistency
Problem

How Many Complete
Sets Are There?

Consistency
Problem

How Many Complete
Sets Are There?

GDDDD

wAwlwiw LYY

Adding a New
Use Case

\
.-

GDDDD

N AN AN AN

Adding a New
Use Case

Cloud Makes
it Easy to Add
New Databases

Untangle and
Migrate Existing

“Kitchen Sink”
ST 1 CINER

Untangle and
Migrate Existing

“Kitchen Sink”
ST 1 CINER

| started to collect stories, scribbled them as rough ideas

on my iPad with Apple pencil, sent them to the graphic
designer, and got some cool decks back...

Conventional Development

20 people 9 months 2 months left

$£8888

62888
s2agg T
62888 =

Progress

Conventional Development

2 months left
Friday

Lunchbreak

Conventional Development
2 months left

Friday
Lunchbreak

AWS Lambda

? ; Serverless

Serverless Development

2 months left

Serverless Development
2 months left

Monday
@ Office

PROJECT

COMPLETED! @ ®

AWS Lambda

o
=
@]
0a
=
)
w0
")

Serverless Development

2 months left

Team finally agrees A whole
It works and is secure month later

o
=
@]
0a
=
)
w0
")

Serverless Development

" Shipped
T application

S 1 month early

What is different about serverless?

REST JSON
Splitting — - Fasthinaty— -

Monoliths

encodings

Splitting
Monoliths

——

(o

>

(o o

>

(o

>

I
. :
Mlcrosehn/cgs
/‘—‘\

Microservices Amazon AP

Gateway

to Functions

Standard building brick services
provide standardized platform
capabilities

Amazon S3

Amazon
SQS

Amazon
DynamoDB

Amazon

@_E Kinesis

Amazon SNS

Business Logic ‘
Events connect G
- - building blocks
Microservices
to Functions

Microservices

to Functions

0
7,
B =
> 0O
-
Q0
o =
- -
O W
M (@)
)

7,
)
it
>
p S
()
n
O
p &
S

()
i =
= B
Ll
(@
)

Microservices

to Ephemeral
Functions

Amazon
SQS

Microservices Amazon AP

Gateway

to Ephemeral
Functions

Microservices e

DynamoDB

to Ephemeral
Functions

Microservices

to Ephemeral
Functions

Microservices

When the system is idle,

to Ephemeral it shuts down and costs

nothing to run

Functions

So WHY is it so fast to
write a serverless app?

An analogy...

What is the

user need?

What is the |
N\ Make a model spaceship

problem you are 4 quickly and cheaply

trying to solve?

Traditional Development

I

| ————

Design a prototype

Traditional Development

Carve from
modelling clay

Traditional Development

Make molds

Traditional Development

Produce injection molded parts

Traditional Development

Assemble parts

Traditional Development

4\

@745@

Sell finished toy

Traditional Development

r 1 o Al ol
»Lgﬁﬁjei_‘a e?eg > LA\

? i

STA

Design Carve from Make molds Produce injection Assemble Sell finished
a prototype modelling clay molded parts parts toy

Rapid Development

Xl

p——

Big bag of blocks Instructions A few hours

Rapid Development

A finished toy

Rapid Development

)

Lacks fine detail

=

ﬁﬁ Recognizable, but not exactly what

was asked for

=
==Y
=Y

Easy to modify and extend

Optimization

Take a group of Lego bricks...

...ahnd form a new custom brick

A more specialized common component

Traditional

Rapid Development

Full custom design

Building blocks assembly

Months of work

Hours of work

Custom components may be
fragile and need to be debugged
and integrated

Standard reliable components
scale and are well understood
and interoperable

Too many detailed choices

Need to adjust requirements to
fit the patterns available

Long decision cycles

Constraints tend to reduce debate
and speed up decisions

Containers

Serverless

Custom code and services

Serverless events and functions

Lots of choices of frameworks
and APl mechanisms

Standardized choices

Where needed, optimize serverless

applications by also building services using
containers to solve for anything serverless

doesn’t do well... yet.

Combine building blocks including:
A AWS Lambda
(P APl Gateway, EventBridge
&2 Amazon SNS, SQS
%7 Amazon DynamoDB
&= AWS Step Functions

So... why doesn’t everyone use

serverless first?

Objections and limitations

Note: See Re:Invent 2019 SVS343

Objections Summary

There are answers to all of these...

Patterns, Portability
Language support
Scalability, Resilience
Startup and network latency

Databases/storage interfacing

Too hard to get started

Security

State handling, event processing

Limited run duration

Complex configs

Adrian retired from Amazon in the middle of

2022 and is now working as an advisor, analyst
and consultant via OrionX.net

DevSusOps

Adding sustainability concerns to devel

Adrian Cockcroft - OrionX.net
@adrianco - @DevSusOps - Oct 2022

Leave the world habitable for future generations

Market transition risks

Regulatory compliance
Physical risks to business assets

Why does sustainability matter?

“Green” market positioning Employee enthusiasm

Reduced costs now or in the future
Social license to operate

What can we do about it?

Development

Optimize code

Choose faster languages and runtimes
Efficient algorithms

Faster implementations

Reduce logging

Reduce retries and work amplification

Operations

Higher utilization

Automation

Relax over-specified requirements
Archive and delete data sooner
Deduplicate data

Choose times and locations carefully

For workload optimization we need
directional and proportional guidance:

Cloud Carbon Footprint tool - Open source, uses billing data as input
Maintains a set of reasonable estimates/guesses for carbon factors

https://www.cloudcarbonfootprint.org

Green Software Foundation Software Carbon Intensity - SCI
A model for reporting software impact per business operation

https://greensoftware.foundation/projects/

AWS Well Architected Pillar for Sustainability

Guidance on how to optimize development and operations for carbon
https://docs.aws.amazon.com/wellarchitected/latest/sustainability-pillar/sustainability-pillar. html

Where is all this going to be in a few years?

Monitoring tools will report carbon
Cloud providers will (all eventually) have detailed metrics

EU and US cloud regions are close to zero carbon now

Asian regions will move to zero carbon by 2025
(All providers have the same problem with regional policies)

I‘alt all folk
l!“le s there s time for core
and some drlnks?

EISE

> summary (response)
Min. 1st Qu. Median Mean 3rd OQu. Max.
1.909 2.550 2.820 3.086 3.214 67.680
> quantile(response,c(0.95,0.99))
95% 99%
4.149556 6.922115
> sd(response)
1.941328
> mean(response) + 2 * sd(response)
6.968416

Histogram of response[response < 6]

'.“_',).(..q

https://github.com/adrianco/chp

Thoompbgnt Ower Time

= A

Pineapple Dalek says
INEBRIATE!
INEBRIATE!

Colts pr WMiyrate

Avarage Resgooas Tire (o)

Scalability plots generated using appdynamics.com

mds15 TCPcallsPerUtilization Thessghgut Over Thue

Sl ™

|

Well behaved Lock Contention

Bottlenecks

Looping autoscaled

Oscillating, thread shortage

https://github.com/adrianco/chp
Cockcroft Headroom Plot

https://soundcloud.com/adrian-cockcroft/black-tiger-dont-look-back
https://www.slideshare.net/adrianco - Netflix era decks
https://www.slideshare.net/adriancockcroft - Battery Ventures decks
https://github.com/adrianco/slides - AWS decks and later including a pdf of these slides!
https://www.youtube.com/@adriancockcroft

Replacing Datacenter Oracle with

Netflix in the Cloud Global Apache Cassandra on AWS

Adrian Cockcroft @adrianco

Adrian Cockcroft @adrianco Technology Fellow - Battery Ventures

Technology Fellow - Battery Ventures October 2016
August 2016

The New De-Normal

Communicating Sequential Goroutines

Adrian Cockeroft @adrianco
Technology Fellow - Battery Ventures
July 2016

B s ‘ ; /’ Kitchen Sink

Analogy

"‘

*>Adrian's.Greatest Hits, B-Sidés and Re-

Issues

|

Thanks! Any gquestions?

Adrian Cockcroft | YOW | December 2022

\ @adrianco@mastodon.social
-‘ d.

